StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Suggested languages for you:

Americas

Europe

Electrical Systems

The smartphone you use to communicate with your friends, the television you use to watch your favorite programs, and the electrical wires running along the side of the highway. What do all these things have in common? They are all examples of **electrical systems** that play a significant part in our daily lives. Since the late 19^{th} century, electricity became more commercially available to the general public, allowing inventors and engineers to build electricity-dependent machines that we could use in our homes. Now the world is as dependent on **electrical ****systems **as its ever been, so keep reading this article to learn more about how these systems work, as well as the components that make up all of the devices we use today!

Content verified by subject matter experts

Free StudySmarter App with over 20 million students

Explore our app and discover over 50 million learning materials for free.

- Astrophysics
- Absolute Magnitude
- Astronomical Objects
- Astronomical Telescopes
- Black Body Radiation
- Classification by Luminosity
- Classification of Stars
- Cosmology
- Doppler Effect
- Exoplanet Detection
- Hertzsprung-Russell Diagrams
- Hubble's Law
- Large Diameter Telescopes
- Quasars
- Radio Telescopes
- Reflecting Telescopes
- Stellar Spectral Classes
- Telescopes
- Atoms and Radioactivity
- Fission and Fusion
- Medical Tracers
- Nuclear Reactors
- Radiotherapy
- Random Nature of Radioactive Decay
- Thickness Monitoring
- Circular Motion and Gravitation
- Applications of Circular Motion
- Centripetal and Centrifugal Force
- Circular Motion and Free-Body Diagrams
- Fundamental Forces
- Gravitational and Electric Forces
- Gravity on Different Planets
- Inertial and Gravitational Mass
- Vector Fields
- Classical Mechanics
- 3D Euclidean Space
- Acceleration in Projectile Motion
- Angular Acceleration and Centripetal Acceleration
- Angular Frequency and Period
- Angular Momentum of One Particle
- Attractor
- Average Velocity and Instantaneous Velocity
- Basis Vector
- Calculus of Variations
- Canonical Transformations
- Cartesian to Polar Coordinates
- Center of Mass for a Rigid Body
- Chaos Theory
- Configuration Space
- Conservative Force
- Coupled Oscillators
- Cross Section
- Damped Driven Oscillator
- Differential Cross Section
- Euler Angles
- Euler-Lagrange Equations
- External Forces
- Frame Analysis
- Galilean Transformation
- Generalized Momenta
- Hamilton's Equations of Motion
- Hamilton's Principle
- Hamiltonian
- Hamiltonian Density
- Hamiltonian Mechanics
- Ignorable Coordinates
- Impact Parameter
- Inertia Tensor
- Inertial Frame of Reference
- Integrable Systems
- Interaction Energy
- Kinetic Energy of a Particle
- Lagrangian
- Lagrangian Constraints
- Lagrangian Density
- Lagrangian Mechanics
- Legendre Transformation
- Linear Analysis
- Liouville's Theorem
- Matrices in Physics
- Motion of a Particle
- Multiparticle System
- Noether's Theorem
- Non Uniform Acceleration
- Normal Modes
- Normal and Binormal Vectors
- Parallel Axis Theorem
- Perturbation Theory
- Phase Space
- Poisson Bracket
- Position and Displacement
- Power Physics
- Principle of Least Action
- Quantum Field Theory
- Relative Motion in 2 Dimensions
- Rigid Body Dynamics
- Rigid Body Rotation
- Rolling Motion
- Rotational Motion Equations
- Scattering Angle
- Simple Harmonic Oscillator
- Stress Energy Tensor
- Symmetry and Conservation Laws
- Symplectic Methods
- Tensors
- Three Coupled Oscillators
- Torque Vector
- Transformation Between Coordinate Systems
- Two Coupled Oscillators
- Two Dimensional Polar Coordinates
- Two Particles
- Vector Operations
- Vectors in Multiple Dimensions
- Velocity and Position by Integration
- Velocity of a Projectile
- Conservation of Energy and Momentum
- Dynamics
- Application of Newton's Second Law
- Buoyancy
- Drag Force
- Dynamic Systems
- Free Body Diagrams
- Normal Force
- Springs Physics
- Superposition of Forces
- Tension
- Electric Charge Field and Potential
- Boundary Conditions for Circuits
- Charge Distribution
- Charged Particle in Uniform Electric Field
- Conservation of Charge
- Electric Field Between Two Parallel Plates
- Electric Field Lines
- Electric Field of Multiple Point Charges
- Electric Force
- Electric Potential Due to Dipole
- Electric Potential due to a Point Charge
- Electrical Systems
- Equipotential Lines
- First Order Circuits
- Natural Response
- Second Order Circuits
- Second Order Op Amp Circuit
- Step Response
- Transient Analysis
- Electricity
- Ammeter
- Attraction and Repulsion
- Band Theory
- Basics of Electricity
- Batteries
- Branch Analysis
- Bridge Circuit
- Cable Capacitance
- Capacitors in Series and Parallel
- Characteristic Impedance of a Cable
- Circuit Schematic
- Circuit Symbols
- Circuits
- Coaxial Cable
- Complex Impedance
- Conductance
- Current Density
- Current-Voltage Characteristics
- DC Circuit
- Delta Y
- Dependent Sources
- Drift Velocity
- Drude Model
- Effective Resistance
- Electric Cables
- Electric Cells
- Electric Current
- Electric Generators
- Electric Motor
- Electrical Power
- Electrical Resistance
- Electricity Generation
- Electronics
- Electronics and Electrical Systems
- Emf and Internal Resistance
- Fiber Optic Cable
- Free Electron Model
- Joule Heating
- Kelvin Bridge
- Kirchhoff's Junction Rule
- Kirchhoff's Laws
- Kirchhoff's Loop Rule
- National Grid Physics
- Network Theorems
- Nodal Analysis
- Non Ohmic Conductor
- Norton Theorem
- Ohm's Law
- Ohmic Conductor
- Potential Difference
- Potentiometers
- Power Rating
- Power Transmission
- RC Circuit
- Reciprocity Theorem
- Resistance
- Resistance and Resistivity
- Resistivity
- Resistors
- Resistors in Parallel
- Resistors in Series
- Resistors in Series and Parallel
- Series and Parallel Circuits
- Shielded Cable
- Simple Circuit
- Static Electricity
- Superconductivity
- Superposition Theorem
- Theoretical Capacity
- Theoretical Energy
- Thevenin Theorem
- Time Constant of RC Circuit
- Transformer
- Voltage Divider
- Voltmeter
- Wheatstone Bridge
- Electricity and Magnetism
- Benjamin Franklin's Kite Experiment
- Changing Magnetic Field
- Circuit Analysis
- Diamagnetic Levitation
- Difference Amplifier
- Differential Amplifier
- Electric Dipole
- Electric Field Energy
- Energy Stored in Inductor
- Ideal Op Amp
- Inductor Examples
- Inductors
- Inductors in Parallel
- Inductors in Series
- Inverting Amplifier
- Linear Op Amp
- Magnets
- Miller's Theorem
- Non Linear Op Amp
- Oersted's Experiment
- Op Amp
- Op Amp Gain
- Standard Capacitor Values
- Standard Inductor Values
- Summing Amplifier
- Voltage
- Electromagnetism
- 1D Wave Equation
- 3 Phase Generator
- 3D Delta Function
- AC Motor
- Ampere's Law
- Ampere's Law Magnetic Field
- Auxiliary Field
- Biot Savart Law
- Bipolar Junction Transistor
- Bound Charge
- Bound Current
- Boundary Conditions for Electromagnetic Fields
- Capacitors
- Coulomb Gauge
- Curl of the Magnetic Field
- Current Source
- Current Sources in Parallel
- Current Sources in Series
- Current to Magnetic Field
- Curvlinear
- DC Motors
- Delta Operator
- Dielectric Boundary Conditions
- Dielectric Constant
- Differential Calculus
- Diode Model
- Diodes
- Displacement Vector
- Divergence of Electrostatic Field
- Divergence of Magnetic Field
- Divergence of a Vector Field
- Electric Dipole Radiation
- Electric Field of a Continous Charge Distribution
- Electric Field of a Dipole
- Electric Susceptibility
- Electromagnetic Field
- Electromagnetic Field Tensor
- Electromagnetic Four Potential
- Electromagnetic Potential Definition
- Electromagnetic Sources
- Electromagnetic Waves in Matter
- Electromagnetic Waves in a Vacuum
- Electromotive Force
- Electrostatic Potential Energy
- Electrostatics Boundary Conditions
- Electrostatics in Vacuum
- Energy in Dielectric System
- Energy in a Magnetic Field
- FET Configuration
- FETs
- Ferromagnetism
- Force on a Conductor
- Forces on Dielectrics
- Gauss Law
- Gauss Theorem
- Gradient Theorem
- Helmholtz Theorem
- Ideal Diode
- Induced Electric Field Formula
- Induced Surface Charge
- Integral Calculus
- JFET
- Jefimenko's Equations
- Laplace's Equation
- Lienard Wiechert Potential
- Line Integral
- Linear Dielectric
- Linear Media
- Lorentz Force Law
- Lorentz Transformations
- MOSFETs
- Magnetic Charge
- Magnetic Dipole Radiation
- Magnetic Moment
- Magnetic Permeability
- Magnetic Scalar Potential
- Magnetic Susceptibility
- Magnetic Vector Potential
- Magnetization
- Magnetostatic in Matter
- Magnetostatics
- Maxwell's Equations
- Maxwell's Equations Differential Form
- Maxwell's Equations Integral Form
- Method of Images
- Monochromatic Wave
- Motional EMF
- Motor Characteristics
- Multipole Expansion
- Mutual Inductance
- NPN and PNP Transistor
- One Dimensional Laplace Equation
- PN Junction
- Poisson Equation
- Polar Molecule
- Polarization Vector
- Potentials
- Proper Time
- Real Transformer
- Rectangular Waveguide
- Relativistic Dynamics
- Relativistic Electrodynamics
- Relativistic Kinematics
- Relativistic Mechanics
- Relativistic Momentum
- Resonant Cavity
- Retarded Potential
- Scalar and Vector Fields
- Semiconductor Diode
- Simple Motor
- Sinusoidal Wave
- Spacetime
- Spherical Coordinates
- Stokes Theorem
- Surface Charge
- Surface Integral
- TE Mode
- TEM Mode
- TM Mode
- The Dirac Delta Function
- The Transfer of Energy by Electromagnetic Waves
- Three Dimensional Laplace Equation
- Torque on Magnetic Dipole
- Two Dimensional Laplace Equation
- Uniqueness Theorem
- Vector Algebra
- Voltage Source
- Voltage Sources in Parallel
- Voltage Sources in Series
- Volume Integral
- Waveguide
- Work in Electrostatics
- Electrostatics
- Energy Physics
- Big Energy Issues
- Conservative and Non Conservative Forces
- Efficiency in Physics
- Elastic Potential Energy
- Electrical Energy
- Energy and the Environment
- Forms of Energy
- Geothermal Energy
- Gravitational Potential Energy
- Heat Engines
- Heat Transfer Efficiency
- Kinetic Energy
- Mechanical Power
- Potential Energy
- Potential Energy and Energy Conservation
- Pulling Force
- Renewable Energy Sources
- Wind Energy
- Work Energy Principle
- Engineering Physics
- 2 Bit Adder
- Angular Momentum
- Angular Work and Power
- Binary Representation
- Cascade of Adders
- Combinational Circuit
- Converting Analogue to Digital
- Demultiplexer
- Digital Circuits
- Digital to Analog Conversion
- Electric Switch
- Encoder and Decoder
- Engine Cycles
- First Law of Thermodynamics
- Flip Flop Circuit
- Logic Switch
- MOSFET Switch
- Moment of Inertia
- Multiplexor
- Non-Flow Processes
- PV Diagrams
- Reversed Heat Engines
- Rotational Kinetic Energy
- Second Law and Engines
- Thermodynamics and Engines
- Torque and Angular Acceleration
- Voltage Levels
- Famous Physicists
- Fields in Physics
- Alternating Currents
- Capacitance
- Capacitor Charge
- Capacitor Discharge
- Coulomb's Law
- Dielectric
- Electric Field Strength
- Electric Fields
- Electric Potential
- Electromagnetic Induction
- Energy Stored by a Capacitor
- Equipotential Surface
- Escape Velocity
- Gravitational Field Strength
- Gravitational Fields
- Gravitational Potential
- Magnetic Fields
- Magnetic Flux Density
- Magnetic Flux and Magnetic Flux Linkage
- Moving Charges in a Magnetic Field
- Newton’s Laws
- Operation of a Transformer
- Parallel Plate Capacitor
- Planetary Orbits
- Synchronous Orbits
- Fluids
- Absolute Pressure and Gauge Pressure
- Application of Bernoulli's Equation
- Archimedes' Principle
- Conservation of Energy in Fluids
- Fluid Flow
- Fluid Systems
- Force and Pressure
- Force
- Conservation of Momentum
- Contact Forces
- Elastic Forces
- Force and Motion
- Gravity
- Impact Forces
- Moment Physics
- Moments Levers and Gears
- Moments and Equilibrium
- Pressure
- Resultant Force
- Safety First
- Time Speed and Distance
- Velocity and Acceleration
- Work Done
- Fundamentals of Physics
- Further Mechanics and Thermal Physics
- Bottle Rocket
- Charles law
- Circular Motion
- Diesel Cycle
- Gas Laws
- Heat Transfer
- Heat Transfer Experiments
- Ideal Gas Model
- Ideal Gases
- Kinetic Theory of Gases
- Models of Gas Behaviour
- Newton's Law of Cooling
- Periodic Motion
- Rankine Cycle
- Resonance
- Simple Harmonic Motion
- Simple Harmonic Motion Energy
- Temperature
- Thermal Equilibrium
- Thermal Expansion
- Thermal Physics
- Volume
- Work in Thermodynamics
- Geometrical and Physical Optics
- Kinematics Physics
- Air Resistance
- Angular Kinematic Equations
- Average Velocity and Acceleration
- Displacement, Time and Average Velocity
- Frame of Reference
- Free Falling Object
- Kinematic Equations
- Motion in One Dimension
- Motion in Two Dimensions
- Rotational Motion
- Uniformly Accelerated Motion
- Linear Momentum
- Magnetism
- Ampere force
- Earth's Magnetic Field
- Fleming's Left Hand Rule
- Induced Potential
- Magnetic Forces and Fields
- Motor Effect
- Particles in Magnetic Fields
- Permanent and Induced Magnetism
- Magnetism and Electromagnetic Induction
- Eddy Current
- Faraday's Law
- Induced Currents
- Inductance
- LC Circuit
- Lenz's Law
- Magnetic Field of a Current-Carrying Wire
- Magnetic Flux
- Magnetic Materials
- Monopole vs Dipole
- RL Circuit
- Measurements
- Mechanics and Materials
- Acceleration Due to Gravity
- Bouncing Ball Example
- Bulk Properties of Solids
- Centre of Mass
- Collisions and Momentum Conservation
- Conservation of Energy
- Density
- Elastic Collisions
- Electromechanical Actuators
- Force Energy
- Friction
- Graphs of Motion
- Linear Motion
- Linear Motor
- Materials
- Materials Energy
- Moments
- Momentum
- Power and Efficiency
- Projectile Motion
- Scalar and Vector
- Stepper Motors
- Terminal Velocity
- Vector Problems
- Work and Energy
- Young's Modulus
- Medical Physics
- Absorption of X-Rays
- CT Scanners
- Defects of Vision
- Defects of Vision and Their Correction
- Diagnostic X-Rays
- Effective Half Life
- Electrocardiography
- Fibre Optics and Endoscopy
- Gamma Camera
- Hearing Defects
- High Energy X-Rays
- Lenses
- Magnetic Resonance Imaging
- Noise Sensitivity
- Non Ionising Imaging
- Physics of Vision
- Physics of the Ear
- Physics of the Eye
- Radioactive Implants
- Radionuclide Imaging Techniques
- Radionuclide Imaging and Therapy
- Structure of the Ear
- Ultrasound Imaging
- X-Ray Image Processing
- X-Ray Imaging
- Modern Physics
- Bohr Model of the Atom
- Disintegration Energy
- Franck Hertz Experiment
- Ionization Gauge
- Ionized Gas
- Linear Potentiometer
- Magnetometer
- Mass Energy Equivalence
- Nuclear Reaction
- Nucleus Structure
- Optical Encoder
- Photodiode
- Photoelectric Effect in Photocells
- Photoresistor
- Pressure Gauges
- Quantization of Energy
- Rotary Encoder
- Sensors
- Sound Sensor
- Spectral Lines
- The Discovery of the Atom
- Thermistors
- Thermocouples
- Transduction
- Wave Function
- Nuclear Physics
- Alpha Beta and Gamma Radiation
- Binding Energy
- Half Life
- Induced Fission
- Mass and Energy
- Nuclear Instability
- Nuclear Radius
- Radioactive Decay
- Radioactivity
- Rutherford Scattering
- Safety of Nuclear Reactors
- Oscillations
- Energy Time Graph
- Energy in Simple Harmonic Motion
- Hooke's Law
- Kinetic Energy in Simple Harmonic Motion
- Mechanical Energy in Simple Harmonic Motion
- Pendulum
- Period of Pendulum
- Period, Frequency and Amplitude
- Phase Angle
- Physical Pendulum
- Restoring Force
- Simple Pendulum
- Spring-Block Oscillator
- Torsional Pendulum
- Velocity
- Particle Model of Matter
- Physical Quantities and Units
- Converting Units
- Physical Quantities
- SI Prefixes
- Standard Form Physics
- Units Physics
- Use of SI Units
- Physics of Motion
- Acceleration
- Angular Acceleration
- Angular Displacement
- Angular Velocity
- Centrifugal Force
- Centripetal Force
- Displacement
- Equilibrium
- Forces of Nature Physics
- Galileo's Leaning Tower of Pisa Experiment
- Inclined Plane
- Inertia
- Mass in Physics
- Speed Physics
- Static Equilibrium
- Quantum Physics
- Addition Theorem Spherical Harmonics
- Adjoint Representation
- Angular Momentum Coupling
- Born Rule
- Bound State
- Classical Angular Momentum
- Classical Mechanics vs Quantum Mechanics
- Clebsch Gordan Coefficients
- Coherent State
- Compton Scattering
- Creation and Annihilation Operators
- Degenerate Perturbation Theory
- Delta Function Potential
- Density Matrix
- Dirac Notation
- Double Slit Experiment
- Ehrenfest Theorem
- Equipartition Theorem
- Exchange Operator
- Expectation Value Quantum Mechanics
- Fermi Golden Rule
- Fermions and Bosons
- Finite Square Well
- Fock Space
- Free Particle in Quantum Mechanics
- Geometric Rotation
- Heisenberg Picture
- Hermite Polynomials
- Hermitian Operator
- Hilbert Space
- Hydrogen Spectrum
- Hydrogen Wave Function
- Identical Particles
- Identical Particles in Quantum Mechanics
- Infinite Square Well
- Linear Operators in Hilbert Spaces
- Normalization of the Wave Function
- Observables
- Pauli Matrices
- Perturbation in Quantum Mechanics
- Planck Postulate
- Plancks Quantum Theory
- Postulates of Quantum Mechanics
- Probabilistic Mechanics
- Quantum Angular Momentum
- Quantum Conservation
- Quantum Entanglement
- Quantum Harmonic Oscillator
- Quantum Measurement
- Quantum Mechanics
- Quantum Mechanics in Three Dimensions
- Quantum Model of Hydrogen Atom
- Quantum Orbital Angular Momentum
- Quantum Physics Basics
- Quantum Representation
- Quantum Spin
- Rayleigh Jeans Law
- Rotation Operator
- Rotational Invariance
- Schodinger Equation Example
- Schrodinger Equation
- Schrödinger's Cat
- Spherical Harmonics
- Spin Properties
- Statistical Quantum Mechanics
- Stefan Boltzmann Law
- Stern Gerlach Experiment
- Symmetrization Postulate
- Tensor Product of Hilbert Spaces
- Thermal Radiation
- Time Independent Schrodinger Equation
- Two State Quantum System
- Uncertainty Relations in Quantum Mechanics
- Variational Principle Quantum
- Zeeman Effect
- Radiation
- Antiparticles
- Antiquark
- Atomic Model
- Classification of Particles
- Collisions of Electrons with Atoms
- Conservation Laws
- Electromagnetic Radiation and Quantum Phenomena
- Isotopes Radiation
- Neutron Number
- Particles
- Photons
- Protons
- Quark Physics
- Specific Charge
- The Photoelectric Effect
- Wave-Particle Duality
- Rotational Dynamics
- Angular Impulse
- Angular Kinematics
- Angular Motion and Linear Motion
- Connecting Linear and Rotational Motion
- Orbital Trajectory
- Rotational Equilibrium
- Rotational Inertia
- Satellite Orbits
- Third Law of Kepler
- Scientific Method Physics
- Data Collection
- Data Representation
- Drawing Conclusions
- Equations in Physics
- Uncertainties and Evaluations
- Solid State Physics
- 3D Lattice
- Amorphous Solid
- Amorphous Solid Structure
- Anisotropy
- Biopolymers
- Body Centered Cubic
- Bose Einstein Condensate
- Bragg's Law
- Brownian Motion
- Chemical Bonds
- Compressibility
- Condensed Matter Physics
- Cooper Pairing
- Critical Field
- Crystal Structure
- Crystallography
- Cubic Close Packing
- DC Conductivity
- Diatomic Lattices
- Doped Semiconductor
- Double-Slit Experiment with Electrons
- Effective Nuclear Charge
- Eigenstate
- Elastic Strain
- Electron Theory
- Energy Scale
- Fundamental Lattices
- Hexagonal Close Packed
- Hierarchical Structure
- Hydrogen Ionic Bond
- Interstitial Defect
- Isotropy
- Lattice Enthalpy
- Lattice Translation Vectors
- Lattice Vibration
- Lattices
- Local Field
- Locus and Loci
- Meissner Effect
- Miller Indices
- Neutron Scattering
- Null Resistivity
- Ordered Structure
- Pair Distribution Function
- Pauli Repulsion
- Perfect Crystal
- Phonon
- Radial Distribution Function
- Random Coil
- Scattering
- Semiconductor Devices
- Short Range Order
- Simple Cubic Unit Cell
- Solids
- Sommerfeld Theory
- Specific Heat of a Solid
- Stress Components
- Structure of Periodic Table
- Substitutional Defect
- Symmetry in Crystals
- Translation Vector
- Translational Symmetry
- Vacancy Defect
- Van der Waals Attraction
- X Ray Scattering
- Yield Stress
- Space Physics
- Thermodynamics
- Heat Radiation
- Thermal Conductivity
- Thermal Efficiency
- Thermodynamic Diagram
- Thermodynamic Force
- Thermodynamic and Kinetic Control
- Torque and Rotational Motion
- Centripetal Acceleration and Centripetal Force
- Conservation of Angular Momentum
- Force and Torque
- Muscle Torque
- Newton's Second Law in Angular Form
- Simple Machines
- Unbalanced Torque
- Translational Dynamics
- Centripetal Force and Velocity
- Critical Speed
- Free Fall and Terminal Velocity
- Gravitational Acceleration
- Kinetic Friction
- Object in Equilibrium
- Orbital Period
- Resistive Force
- Spring Force
- Static Friction
- Turning Points in Physics
- Cathode Rays
- Discovery of the Electron
- Einstein's Theory of Special Relativity
- Electromagnetic Waves
- Electron Microscopes
- Electron Specific Charge
- Length Contraction
- Michelson-Morley Experiment
- Millikan's Experiment
- Newton's and Huygens' Theories of Light
- Photoelectricity
- Relativistic Mass and Energy
- Special Relativity
- Thermionic Electron Emission
- Time Dilation
- Wave Particle Duality of Light
- Wave Optics
- 4th Maxwell Equation
- Aberrations
- Amplitude of Wave
- Atmospheric Aberration
- Cameras
- Chromatic Aberration
- Coded Aperture
- Coma Aberration
- Converging Lens
- Convex Mirrors
- Distortion
- Diverging Lens
- Electromagnetic Energy
- Electromagnetic Momentum
- Energy and Frequency Relationship
- Energy of a Photon
- Field Curvature
- First Order Theory
- Focal Length
- Focal Points
- Geometrical Optics
- How Are Electromagnetic Waves Produced
- Human Eyes
- Image Formed by Plane Mirror
- Intensity and Amplitude Relationship
- Lens Maker Equation
- Light Particles
- Light Prism
- Light Wave
- Linear Wave
- Magnifiers
- Momentum of a Photon
- Non Linear Wave
- Oblique Ray Method
- Optical Instruments
- Parallel Beam
- Path of Light
- Pinhole Cameras
- Plancks Law
- Plane Electromagnetic Wave
- Principal Point
- Prism Light Refraction
- Propagation of Light
- Radiation Pressure
- Rectilinear Propagation
- Reflection at a Spherical Surface
- Spherical Aberration
- Spherical Mirror
- Standing Electromagnetic Waves
- Superposition of Waves
- Taylor Expansions
- Telephoto Lenses
- The Nature of Colour
- Thick Lens Formula
- Thick Lenses
- Third Order Theory
- Total Internal Reflection
- Virtual Image
- Wave Equations
- X Ray Telescope
- Waves Physics
- Acoustics
- Applications of Ultrasound
- Applications of Waves
- Capillary Waves
- Diffraction
- Diffraction Gratings
- Doppler Effect in Light
- Earthquake Shock Waves
- Echolocation
- Fourier Analysis Waves
- Gravity Waves
- Group Velocity
- Harmonics
- Image Formation by Lenses
- Interference
- Light
- Longitudinal Wave
- Longitudinal and Transverse Waves
- Love Waves
- Mirror
- Oscilloscope
- Phase Difference
- Phase Velocity
- Polarisation
- Progressive Waves
- Properties of Waves
- Ray Diagrams
- Ray Tracing Mirrors
- Rayleigh Waves
- Reflection
- Refraction
- Refraction at a Plane Surface
- Resonance in Sound Waves
- Seismic Waves
- Snell's law
- Spectral Colour
- Standing Waves
- Stationary Waves
- Superposition of Two Waves
- Total Internal Reflection in Optical Fibre
- Transverse Wave
- Ultrasound
- Vibrating String
- Water Wave
- Wave Characteristics
- Wave Packet
- Wave Speed
- Waves in Communication
- X-rays
- Work Energy and Power
- Conservative Forces and Potential Energy
- Dissipative Force
- Energy Dissipation
- Energy in Pendulum
- Force and Potential Energy
- Force vs. Position Graph
- Orbiting Objects
- Potential Energy Graphs and Motion
- Spring Potential Energy
- Total Mechanical Energy
- Translational Kinetic Energy
- Work Energy Theorem
- Work and Kinetic Energy

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenThe smartphone you use to communicate with your friends, the television you use to watch your favorite programs, and the electrical wires running along the side of the highway. What do all these things have in common? They are all examples of **electrical systems** that play a significant part in our daily lives. Since the late 19^{th} century, electricity became more commercially available to the general public, allowing inventors and engineers to build electricity-dependent machines that we could use in our homes. Now the world is as dependent on **electrical ****systems **as its ever been, so keep reading this article to learn more about how these systems work, as well as the components that make up all of the devices we use today!

Firstly, let's define what exactly we mean by an electrical system.

An **electrical system **is an object made up of various electrical components that allow for transporting electrical energy for a particular purpose.

This may seem vague at first, but electrical systems is a label that can encompass a wide variety of different day-to-day objects. Phones, computers, and electrical power grids are all electrical systems. The two quantities that we will always see across any type of electrical system are current and voltage, which allows for electrical energy to be generated.

An electrical **current **in a circuit is the net motion of electrons flowing through the wires due to the presence of an electrical force.

When we picture electrons, we typically think of very small circular objects orbiting the nucleus of an atom in uniform motion. In reality, if we consider the electrons in a piece of metal, they are flying around in a random motion at extremely high speeds. However, current in a system only flows when there is an overall **net motion **of the electrons rather than just their random motion.

We have this net flow of electrons due to the difference in electrical potential, or a voltage between two ends of a wire. This is similar to the phenomenon of osmosis. If we had a solution of water mixed with salt, connected to another solution of just pure water, separated by a thin permeable barrier, the difference in salt concentrations would force the salty solution to diffuse over into the pure water solution. Similarly with electrons, if the two ends of a wire had different potential differences, this would force electrons on one end to move over to the other end, generating a current. Thus we can define voltage as the following.

The **voltage **across two points in a circuit causes the electrical current to flow in a wire.

Now that we have established what we mean by an electrical system, let's consider the different parts that make up these systems.

First, let's look at resistors; these electrical components have a quality called **resistance**. We can define resistance as the following.

The **resistance **of a resistor is the extent of the component's ability to impede current.

All materials carry some sort of resistance. However, when we consider electrical circuits in the future, we will assume that components such as wires, ammeters, and voltmeters have zero resistance unless otherwise stated. The equation used to calculate the resistance of a resistor is

\[ R = \frac{V}{I} ,\]

where \(R\) is the resistance measured in ohms \(\Omega\), \(V\) is the voltage across the electrical components measured in volts \(\mathrm{V}\), and \(I\) is the current running across the component measured in amperes \(\mathrm{A}\). This equation is also referred to as **Ohm's law**.

Moving on, another important component of electrical systems is capacitors. These components are used to store electrical potential energy through the physical separation of opposite charges on conductive plates, which results in the formation of an electric field between the two plates.

Capacitors can come in various forms. However, the one we most often come across while studying physics is the parallel plate capacitor. Referring to the figure below, we can see that the form of a parallel plate capacitor is made up of two conducting plates with a charge magnitude \(Q\) on each plate, separated by a small distance \(d\). When a capacitor is connected to a power source, the current in the circuit creates a build-up of electrons on one side of the capacitor, creating a separation of charge.

In order to measure the amount of electrical potential energy stored in a capacitor, we define its capacitance.

The **capacitance **of a capacitor is a measure of the stored electrical potential energy.

We can calculate the energy stored in a capacitor as

\[ U_{\text{C}} = \frac{1}{2} Q \Delta V ,\]

where \(U_{\text{C}}\) is the energy stored in the capacitor measured in joules \(\mathrm{J}\), \(Q\) is the magnitude of the charge stored on each plate measured in coulombs \(\mathrm{C}\), and \(\Delta V\) is the potential difference across the capacitor measured in volts \(\mathrm{V}\).

You may come across various versions of this energy equation because Ohm's law can be substituted in to allow us to calculate the energy in a capacitor depending on what quantities we are given.

Finally, an inductor is an electrical component that uses the current in a circuit to generate a magnetic field. You may have come across the term induction in everyday objects such as an induction hob. These objects use the phenomenon of **electromagnetic induction** to generate heat.

**Electromagnetic induction **is the creation of an electromotive force (EMF) in a conductor due to a changing magnetic field.

An example of an electrical inductor is a transformer; these allow for large voltages from power grids to be stepped down into smaller voltages that can be used in everyday objects in households. On the other hand, the process can also be reversed to allow for smaller voltages to be stepped up into larger voltages. Thus, transformers are very useful when transporting energy across electrical systems that may require a significantly different magnitude of voltage.

The equation for a transformer is given as

\[ \frac{V_{\text{p}}}{V_{\text{s}}} = \frac{N_{\text{p}}}{N_{\text{s}}} ,\]

where \(V_{\text{p}}\) and \(V_{\text{s}}\) are the voltage across the primary and secondary conductor respectively, measured in volts \(\mathrm{V}\). On the right-hand side, \(N_{\text{p}}\) and \(N_{\text{s}}\) are the number of turns on the primary and secondary sides respectively.

Now let's consider an example of an electrical system, a circuit in your house used to take power from the main power lines and turn on the lights in your house. We represent this in the figure below as a circuit diagram.

Here we have a step-down transformer converting energy from the power grid into voltages safe for domestic use. This then acts as a power source for the three bulbs connected in a parallel orientation. Whether or not the bulbs are turned on or turned off is dependent on the switch connected to the circuit: when closed, all the bulbs will have energy supplying them, and when open, the bulbs will be turned off. This is an example of an electric system that may be found in many domestic households.

Finally, an electrical power system is a specific type of power system that is used to transport electrical energy and acts as a power supply to other electrical systems. We have already come across an example of an electrical power system in the form of a national power grid that is used to transport electrical energy from a power plant to domestic households across the country.

An important aspect of electrical power systems is the supply of energy that is then converted into electrical energy. Examples of energy sources include

Fossil fuels such as coal, gas, and oil

Wind turbines

Nuclear power

Solar panels

Geothermal energy

Hydropower energy

All of these energy sources generate energy in their own unique way. However, the conversion to electrical energy is similar across the board. Electromagnetic induction is a key factor in the conversion to electrical energy, as it allows for an electromotive force to be induced through the movement of a magnetic field. Devices called generators use the energy harnessed from these various power sources to move or rotate an electromagnet. Thus, this creates a changing magnetic field around the electromagnet, so we can retrieve electrical power when placed next to a conductor.

Finally, let's look at a specific example of electrical power systems, solar electricity systems. To collect solar energy, we have photovoltaic cells that are placed in areas that experience direct sunlight. These devices are made up of the semiconductor material silicon. Due to silicon's structure, the material's electrons are bounded very weakly to their atom, making them easy to dislodge. When light is shined upon the cells, the photons comprising the light rays interact with the orbiting electrons, knocking them out of place. These free electrons then behave as a current, transporting electrical energy between the cells and into our homes.

- An electrical system is a broad term used to describe an object made up of various electrical components that allow transporting of electrical energy for a particular purpose.
- The key quantities observed in any electrical system are current and voltage.
- The different components of an electrical system include resistors, capacitors, and inductors.
- The resistance of a resistor can be calculated using Ohm's law, \(R = \frac{V}{I}\).
- The energy of a capacitor can be calculated using \(U_{\text{C}} = \frac{1}{2} Q \Delta V\).
- The equation of a transformer is \( \frac{V_{\text{p}}}{V_{\text{s}}} = \frac{N_{\text{p}}}{N_{\text{s}}} \).
- An electrical power system takes energy generated from various types of energy sources and converts it into electrical energy.
- Solar panels are an example of electrical systems that transport energy from natural sunlight to domestic homes.

- Fig. 1 - Electrical power lines, Wikimedia Commons (https://commons.wikimedia.org/wiki/File:Electric_Lines_10_(208283181).jpeg) Licensed by CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/)
- Fig. 2 - Resistor, StudySmarter Originals.
- Fig. 3 - Parallel plate capacitor, StudySmarter Originals.
- Fig. 4 - Transformer, StudySmarter Originals.
- Fig. 5 - Transformer connected to bulbs, StudySmarter Originals.
- Fig. 6 - Solar panels, Wikimedia Commons (https://commons.wikimedia.org/wiki/File:As_solar_firmengebaude.jpg) Licensed by CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/)

An electrical power system is a type of electrical system.

A resistor, a capacitor, and an inductor.

They allow for the transport of electrical energy from power stations to domestic households.

Changing energy from other sources into electrical energy through electromagnetic induction.

Flashcards in Electrical Systems15

Start learningHow do we define an electric system?

An object made up of various electrical components that allow for transporting electrical energy for a particular purpose.

What two quantities are found in all electric systems?

Current.

How do we define current?

The net motion of electrons flowing through the wires due to the presence of an electrical force.

How do we define voltage?

The voltage** **across two points in a circuit causes the electrical current to flow in a wire.

What is not a part of an electric system?

Lightbulb.

What is the equation for a resistor?

\(R = \frac{V}{I}\).

Already have an account? Log in

More about Electrical Systems

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Mock-Exams
- Smart Note-Taking

Sign up to highlight and take notes. It’s 100% free.

Save explanations to your personalised space and access them anytime, anywhere!

Sign up with Email Sign up with AppleBy signing up, you agree to the Terms and Conditions and the Privacy Policy of StudySmarter.

Already have an account? Log in