StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Suggested languages for you:

Americas

Europe

The Life Cycle of a Star

You may well have heard someone say that "we are all made of stardust" - but did you know this is actually true? Many of the elements our bodies contain can only be produced in a supernova, which is an enormous explosion some stars will produce when they die. These elements are scattered across the universe by these explosions, and some eventually end up being a part of you. Other stars may not die in a supernova but might instead turn into dwarf stars. This article explains the various life cycles a star could have, and what determines how a star will behave.

Content verified by subject matter experts

Free StudySmarter App with over 20 million students

Explore our app and discover over 50 million learning materials for free.

- Astrophysics
- Absolute Magnitude
- Astronomical Objects
- Astronomical Telescopes
- Black Body Radiation
- Classification by Luminosity
- Classification of Stars
- Cosmology
- Doppler Effect
- Exoplanet Detection
- Hertzsprung-Russell Diagrams
- Hubble's Law
- Large Diameter Telescopes
- Quasars
- Radio Telescopes
- Reflecting Telescopes
- Stellar Spectral Classes
- Telescopes
- Atoms and Radioactivity
- Fission and Fusion
- Medical Tracers
- Nuclear Reactors
- Radiotherapy
- Random Nature of Radioactive Decay
- Thickness Monitoring
- Circular Motion and Gravitation
- Applications of Circular Motion
- Centripetal and Centrifugal Force
- Circular Motion and Free-Body Diagrams
- Fundamental Forces
- Gravitational and Electric Forces
- Gravity on Different Planets
- Inertial and Gravitational Mass
- Vector Fields
- Classical Mechanics
- 3D Euclidean Space
- Acceleration in Projectile Motion
- Angular Acceleration and Centripetal Acceleration
- Angular Frequency and Period
- Angular Momentum of One Particle
- Attractor
- Average Velocity and Instantaneous Velocity
- Basis Vector
- Calculus of Variations
- Canonical Transformations
- Cartesian to Polar Coordinates
- Center of Mass for a Rigid Body
- Chaos Theory
- Configuration Space
- Conservative Force
- Coupled Oscillators
- Cross Section
- Damped Driven Oscillator
- Differential Cross Section
- Euler Angles
- Euler-Lagrange Equations
- External Forces
- Frame Analysis
- Galilean Transformation
- Generalized Momenta
- Hamilton's Equations of Motion
- Hamilton's Principle
- Hamiltonian
- Hamiltonian Density
- Hamiltonian Mechanics
- Ignorable Coordinates
- Impact Parameter
- Inertia Tensor
- Inertial Frame of Reference
- Integrable Systems
- Interaction Energy
- Kinetic Energy of a Particle
- Lagrangian
- Lagrangian Constraints
- Lagrangian Density
- Lagrangian Mechanics
- Legendre Transformation
- Linear Analysis
- Liouville's Theorem
- Matrices in Physics
- Motion of a Particle
- Multiparticle System
- Noether's Theorem
- Non Uniform Acceleration
- Normal Modes
- Normal and Binormal Vectors
- Parallel Axis Theorem
- Perturbation Theory
- Phase Space
- Poisson Bracket
- Position and Displacement
- Power Physics
- Principle of Least Action
- Quantum Field Theory
- Relative Motion in 2 Dimensions
- Rigid Body Dynamics
- Rigid Body Rotation
- Rolling Motion
- Rotational Motion Equations
- Scattering Angle
- Simple Harmonic Oscillator
- Stress Energy Tensor
- Symmetry and Conservation Laws
- Symplectic Methods
- Tensors
- Three Coupled Oscillators
- Torque Vector
- Transformation Between Coordinate Systems
- Two Coupled Oscillators
- Two Dimensional Polar Coordinates
- Two Particles
- Vector Operations
- Vectors in Multiple Dimensions
- Velocity and Position by Integration
- Velocity of a Projectile
- Conservation of Energy and Momentum
- Dynamics
- Application of Newton's Second Law
- Buoyancy
- Drag Force
- Dynamic Systems
- Free Body Diagrams
- Normal Force
- Springs Physics
- Superposition of Forces
- Tension
- Electric Charge Field and Potential
- Boundary Conditions for Circuits
- Charge Distribution
- Charged Particle in Uniform Electric Field
- Conservation of Charge
- Electric Field Between Two Parallel Plates
- Electric Field Lines
- Electric Field of Multiple Point Charges
- Electric Force
- Electric Potential Due to Dipole
- Electric Potential due to a Point Charge
- Electrical Systems
- Equipotential Lines
- First Order Circuits
- Natural Response
- Second Order Circuits
- Second Order Op Amp Circuit
- Step Response
- Transient Analysis
- Electricity
- Ammeter
- Attraction and Repulsion
- Band Theory
- Basics of Electricity
- Batteries
- Branch Analysis
- Bridge Circuit
- Cable Capacitance
- Capacitors in Series and Parallel
- Characteristic Impedance of a Cable
- Circuit Schematic
- Circuit Symbols
- Circuits
- Coaxial Cable
- Complex Impedance
- Conductance
- Current Density
- Current-Voltage Characteristics
- DC Circuit
- Delta Y
- Dependent Sources
- Drift Velocity
- Drude Model
- Effective Resistance
- Electric Cables
- Electric Cells
- Electric Current
- Electric Generators
- Electric Motor
- Electrical Power
- Electrical Resistance
- Electricity Generation
- Electronics
- Electronics and Electrical Systems
- Emf and Internal Resistance
- Fiber Optic Cable
- Free Electron Model
- Joule Heating
- Kelvin Bridge
- Kirchhoff's Junction Rule
- Kirchhoff's Laws
- Kirchhoff's Loop Rule
- National Grid Physics
- Network Theorems
- Nodal Analysis
- Non Ohmic Conductor
- Norton Theorem
- Ohm's Law
- Ohmic Conductor
- Potential Difference
- Potentiometers
- Power Rating
- Power Transmission
- RC Circuit
- Reciprocity Theorem
- Resistance
- Resistance and Resistivity
- Resistivity
- Resistors
- Resistors in Parallel
- Resistors in Series
- Resistors in Series and Parallel
- Series and Parallel Circuits
- Shielded Cable
- Simple Circuit
- Static Electricity
- Superconductivity
- Superposition Theorem
- Theoretical Capacity
- Theoretical Energy
- Thevenin Theorem
- Time Constant of RC Circuit
- Transformer
- Voltage Divider
- Voltmeter
- Wheatstone Bridge
- Electricity and Magnetism
- Benjamin Franklin's Kite Experiment
- Changing Magnetic Field
- Circuit Analysis
- Diamagnetic Levitation
- Difference Amplifier
- Differential Amplifier
- Electric Dipole
- Electric Field Energy
- Energy Stored in Inductor
- Ideal Op Amp
- Inductor Examples
- Inductors
- Inductors in Parallel
- Inductors in Series
- Inverting Amplifier
- Linear Op Amp
- Magnets
- Miller's Theorem
- Non Linear Op Amp
- Oersted's Experiment
- Op Amp
- Op Amp Gain
- Standard Capacitor Values
- Standard Inductor Values
- Summing Amplifier
- Voltage
- Electromagnetism
- 1D Wave Equation
- 3 Phase Generator
- 3D Delta Function
- AC Motor
- Ampere's Law
- Ampere's Law Magnetic Field
- Auxiliary Field
- Biot Savart Law
- Bipolar Junction Transistor
- Bound Charge
- Bound Current
- Boundary Conditions for Electromagnetic Fields
- Capacitors
- Coulomb Gauge
- Curl of the Magnetic Field
- Current Source
- Current Sources in Parallel
- Current Sources in Series
- Current to Magnetic Field
- Curvlinear
- DC Motors
- Delta Operator
- Dielectric Boundary Conditions
- Dielectric Constant
- Differential Calculus
- Diode Model
- Diodes
- Displacement Vector
- Divergence of Electrostatic Field
- Divergence of Magnetic Field
- Divergence of a Vector Field
- Electric Dipole Radiation
- Electric Field of a Continous Charge Distribution
- Electric Field of a Dipole
- Electric Susceptibility
- Electromagnetic Field
- Electromagnetic Field Tensor
- Electromagnetic Four Potential
- Electromagnetic Potential Definition
- Electromagnetic Sources
- Electromagnetic Waves in Matter
- Electromagnetic Waves in a Vacuum
- Electromotive Force
- Electrostatic Potential Energy
- Electrostatics Boundary Conditions
- Electrostatics in Vacuum
- Energy in Dielectric System
- Energy in a Magnetic Field
- FET Configuration
- FETs
- Ferromagnetism
- Force on a Conductor
- Forces on Dielectrics
- Gauss Law
- Gauss Theorem
- Gradient Theorem
- Helmholtz Theorem
- Ideal Diode
- Induced Electric Field Formula
- Induced Surface Charge
- Integral Calculus
- JFET
- Jefimenko's Equations
- Laplace's Equation
- Lienard Wiechert Potential
- Line Integral
- Linear Dielectric
- Linear Media
- Lorentz Force Law
- Lorentz Transformations
- MOSFETs
- Magnetic Charge
- Magnetic Dipole Radiation
- Magnetic Moment
- Magnetic Permeability
- Magnetic Scalar Potential
- Magnetic Susceptibility
- Magnetic Vector Potential
- Magnetization
- Magnetostatic in Matter
- Magnetostatics
- Maxwell's Equations
- Maxwell's Equations Differential Form
- Maxwell's Equations Integral Form
- Method of Images
- Monochromatic Wave
- Motional EMF
- Motor Characteristics
- Multipole Expansion
- Mutual Inductance
- NPN and PNP Transistor
- One Dimensional Laplace Equation
- PN Junction
- Poisson Equation
- Polar Molecule
- Polarization Vector
- Potentials
- Proper Time
- Real Transformer
- Rectangular Waveguide
- Relativistic Dynamics
- Relativistic Electrodynamics
- Relativistic Kinematics
- Relativistic Mechanics
- Relativistic Momentum
- Resonant Cavity
- Retarded Potential
- Scalar and Vector Fields
- Semiconductor Diode
- Simple Motor
- Sinusoidal Wave
- Spacetime
- Spherical Coordinates
- Stokes Theorem
- Surface Charge
- Surface Integral
- TE Mode
- TEM Mode
- TM Mode
- The Dirac Delta Function
- The Transfer of Energy by Electromagnetic Waves
- Three Dimensional Laplace Equation
- Torque on Magnetic Dipole
- Two Dimensional Laplace Equation
- Uniqueness Theorem
- Vector Algebra
- Voltage Source
- Voltage Sources in Parallel
- Voltage Sources in Series
- Volume Integral
- Waveguide
- Work in Electrostatics
- Electrostatics
- Energy Physics
- Big Energy Issues
- Conservative and Non Conservative Forces
- Efficiency in Physics
- Elastic Potential Energy
- Electrical Energy
- Energy and the Environment
- Forms of Energy
- Geothermal Energy
- Gravitational Potential Energy
- Heat Engines
- Heat Transfer Efficiency
- Kinetic Energy
- Mechanical Power
- Potential Energy
- Potential Energy and Energy Conservation
- Pulling Force
- Renewable Energy Sources
- Wind Energy
- Work Energy Principle
- Engineering Physics
- 2 Bit Adder
- Angular Momentum
- Angular Work and Power
- Binary Representation
- Cascade of Adders
- Combinational Circuit
- Converting Analogue to Digital
- Demultiplexer
- Digital Circuits
- Digital to Analog Conversion
- Electric Switch
- Encoder and Decoder
- Engine Cycles
- First Law of Thermodynamics
- Flip Flop Circuit
- Logic Switch
- MOSFET Switch
- Moment of Inertia
- Multiplexor
- Non-Flow Processes
- PV Diagrams
- Reversed Heat Engines
- Rotational Kinetic Energy
- Second Law and Engines
- Thermodynamics and Engines
- Torque and Angular Acceleration
- Voltage Levels
- Famous Physicists
- Fields in Physics
- Alternating Currents
- Capacitance
- Capacitor Charge
- Capacitor Discharge
- Coulomb's Law
- Dielectric
- Electric Field Strength
- Electric Fields
- Electric Potential
- Electromagnetic Induction
- Energy Stored by a Capacitor
- Equipotential Surface
- Escape Velocity
- Gravitational Field Strength
- Gravitational Fields
- Gravitational Potential
- Magnetic Fields
- Magnetic Flux Density
- Magnetic Flux and Magnetic Flux Linkage
- Moving Charges in a Magnetic Field
- Newton’s Laws
- Operation of a Transformer
- Parallel Plate Capacitor
- Planetary Orbits
- Synchronous Orbits
- Fluids
- Absolute Pressure and Gauge Pressure
- Application of Bernoulli's Equation
- Archimedes' Principle
- Conservation of Energy in Fluids
- Fluid Flow
- Fluid Systems
- Force and Pressure
- Force
- Conservation of Momentum
- Contact Forces
- Elastic Forces
- Force and Motion
- Gravity
- Impact Forces
- Moment Physics
- Moments Levers and Gears
- Moments and Equilibrium
- Pressure
- Resultant Force
- Safety First
- Time Speed and Distance
- Velocity and Acceleration
- Work Done
- Fundamentals of Physics
- Further Mechanics and Thermal Physics
- Bottle Rocket
- Charles law
- Circular Motion
- Diesel Cycle
- Gas Laws
- Heat Transfer
- Heat Transfer Experiments
- Ideal Gas Model
- Ideal Gases
- Kinetic Theory of Gases
- Models of Gas Behaviour
- Newton's Law of Cooling
- Periodic Motion
- Rankine Cycle
- Resonance
- Simple Harmonic Motion
- Simple Harmonic Motion Energy
- Temperature
- Thermal Equilibrium
- Thermal Expansion
- Thermal Physics
- Volume
- Work in Thermodynamics
- Geometrical and Physical Optics
- Kinematics Physics
- Air Resistance
- Angular Kinematic Equations
- Average Velocity and Acceleration
- Displacement, Time and Average Velocity
- Frame of Reference
- Free Falling Object
- Kinematic Equations
- Motion in One Dimension
- Motion in Two Dimensions
- Rotational Motion
- Uniformly Accelerated Motion
- Linear Momentum
- Magnetism
- Ampere force
- Earth's Magnetic Field
- Fleming's Left Hand Rule
- Induced Potential
- Magnetic Forces and Fields
- Motor Effect
- Particles in Magnetic Fields
- Permanent and Induced Magnetism
- Magnetism and Electromagnetic Induction
- Eddy Current
- Faraday's Law
- Induced Currents
- Inductance
- LC Circuit
- Lenz's Law
- Magnetic Field of a Current-Carrying Wire
- Magnetic Flux
- Magnetic Materials
- Monopole vs Dipole
- RL Circuit
- Measurements
- Mechanics and Materials
- Acceleration Due to Gravity
- Bouncing Ball Example
- Bulk Properties of Solids
- Centre of Mass
- Collisions and Momentum Conservation
- Conservation of Energy
- Density
- Elastic Collisions
- Electromechanical Actuators
- Force Energy
- Friction
- Graphs of Motion
- Linear Motion
- Linear Motor
- Materials
- Materials Energy
- Moments
- Momentum
- Power and Efficiency
- Projectile Motion
- Scalar and Vector
- Stepper Motors
- Terminal Velocity
- Vector Problems
- Work and Energy
- Young's Modulus
- Medical Physics
- Absorption of X-Rays
- CT Scanners
- Defects of Vision
- Defects of Vision and Their Correction
- Diagnostic X-Rays
- Effective Half Life
- Electrocardiography
- Fibre Optics and Endoscopy
- Gamma Camera
- Hearing Defects
- High Energy X-Rays
- Lenses
- Magnetic Resonance Imaging
- Noise Sensitivity
- Non Ionising Imaging
- Physics of Vision
- Physics of the Ear
- Physics of the Eye
- Radioactive Implants
- Radionuclide Imaging Techniques
- Radionuclide Imaging and Therapy
- Structure of the Ear
- Ultrasound Imaging
- X-Ray Image Processing
- X-Ray Imaging
- Modern Physics
- Bohr Model of the Atom
- Disintegration Energy
- Franck Hertz Experiment
- Ionization Gauge
- Ionized Gas
- Linear Potentiometer
- Magnetometer
- Mass Energy Equivalence
- Nuclear Reaction
- Nucleus Structure
- Optical Encoder
- Photodiode
- Photoelectric Effect in Photocells
- Photoresistor
- Pressure Gauges
- Quantization of Energy
- Rotary Encoder
- Sensors
- Sound Sensor
- Spectral Lines
- The Discovery of the Atom
- Thermistors
- Thermocouples
- Transduction
- Wave Function
- Nuclear Physics
- Alpha Beta and Gamma Radiation
- Binding Energy
- Half Life
- Induced Fission
- Mass and Energy
- Nuclear Instability
- Nuclear Radius
- Radioactive Decay
- Radioactivity
- Rutherford Scattering
- Safety of Nuclear Reactors
- Oscillations
- Energy Time Graph
- Energy in Simple Harmonic Motion
- Hooke's Law
- Kinetic Energy in Simple Harmonic Motion
- Mechanical Energy in Simple Harmonic Motion
- Pendulum
- Period of Pendulum
- Period, Frequency and Amplitude
- Phase Angle
- Physical Pendulum
- Restoring Force
- Simple Pendulum
- Spring-Block Oscillator
- Torsional Pendulum
- Velocity
- Particle Model of Matter
- Physical Quantities and Units
- Converting Units
- Physical Quantities
- SI Prefixes
- Standard Form Physics
- Units Physics
- Use of SI Units
- Physics of Motion
- Acceleration
- Angular Acceleration
- Angular Displacement
- Angular Velocity
- Centrifugal Force
- Centripetal Force
- Displacement
- Equilibrium
- Forces of Nature Physics
- Galileo's Leaning Tower of Pisa Experiment
- Inclined Plane
- Inertia
- Mass in Physics
- Speed Physics
- Static Equilibrium
- Quantum Physics
- Addition Theorem Spherical Harmonics
- Adjoint Representation
- Angular Momentum Coupling
- Born Rule
- Bound State
- Classical Angular Momentum
- Classical Mechanics vs Quantum Mechanics
- Clebsch Gordan Coefficients
- Coherent State
- Compton Scattering
- Creation and Annihilation Operators
- Degenerate Perturbation Theory
- Delta Function Potential
- Density Matrix
- Dirac Notation
- Double Slit Experiment
- Ehrenfest Theorem
- Equipartition Theorem
- Exchange Operator
- Expectation Value Quantum Mechanics
- Fermi Golden Rule
- Fermions and Bosons
- Finite Square Well
- Fock Space
- Free Particle in Quantum Mechanics
- Geometric Rotation
- Heisenberg Picture
- Hermite Polynomials
- Hermitian Operator
- Hilbert Space
- Hydrogen Spectrum
- Hydrogen Wave Function
- Identical Particles
- Identical Particles in Quantum Mechanics
- Infinite Square Well
- Linear Operators in Hilbert Spaces
- Normalization of the Wave Function
- Observables
- Pauli Matrices
- Perturbation in Quantum Mechanics
- Planck Postulate
- Plancks Quantum Theory
- Postulates of Quantum Mechanics
- Probabilistic Mechanics
- Quantum Angular Momentum
- Quantum Conservation
- Quantum Entanglement
- Quantum Harmonic Oscillator
- Quantum Measurement
- Quantum Mechanics
- Quantum Mechanics in Three Dimensions
- Quantum Model of Hydrogen Atom
- Quantum Orbital Angular Momentum
- Quantum Physics Basics
- Quantum Representation
- Quantum Spin
- Rayleigh Jeans Law
- Rotation Operator
- Rotational Invariance
- Schodinger Equation Example
- Schrodinger Equation
- Schrödinger's Cat
- Spherical Harmonics
- Spin Properties
- Statistical Quantum Mechanics
- Stefan Boltzmann Law
- Stern Gerlach Experiment
- Symmetrization Postulate
- Tensor Product of Hilbert Spaces
- Thermal Radiation
- Time Independent Schrodinger Equation
- Two State Quantum System
- Uncertainty Relations in Quantum Mechanics
- Variational Principle Quantum
- Zeeman Effect
- Radiation
- Antiparticles
- Antiquark
- Atomic Model
- Classification of Particles
- Collisions of Electrons with Atoms
- Conservation Laws
- Electromagnetic Radiation and Quantum Phenomena
- Isotopes Radiation
- Neutron Number
- Particles
- Photons
- Protons
- Quark Physics
- Specific Charge
- The Photoelectric Effect
- Wave-Particle Duality
- Rotational Dynamics
- Angular Impulse
- Angular Kinematics
- Angular Motion and Linear Motion
- Connecting Linear and Rotational Motion
- Orbital Trajectory
- Rotational Equilibrium
- Rotational Inertia
- Satellite Orbits
- Third Law of Kepler
- Scientific Method Physics
- Data Collection
- Data Representation
- Drawing Conclusions
- Equations in Physics
- Uncertainties and Evaluations
- Solid State Physics
- 3D Lattice
- Amorphous Solid
- Amorphous Solid Structure
- Anisotropy
- Biopolymers
- Body Centered Cubic
- Bose Einstein Condensate
- Bragg's Law
- Brownian Motion
- Chemical Bonds
- Compressibility
- Condensed Matter Physics
- Cooper Pairing
- Critical Field
- Crystal Structure
- Crystallography
- Cubic Close Packing
- DC Conductivity
- Diatomic Lattices
- Doped Semiconductor
- Double-Slit Experiment with Electrons
- Effective Nuclear Charge
- Eigenstate
- Elastic Strain
- Electron Theory
- Energy Scale
- Fundamental Lattices
- Hexagonal Close Packed
- Hierarchical Structure
- Hydrogen Ionic Bond
- Interstitial Defect
- Isotropy
- Lattice Enthalpy
- Lattice Translation Vectors
- Lattice Vibration
- Lattices
- Local Field
- Locus and Loci
- Meissner Effect
- Miller Indices
- Neutron Scattering
- Null Resistivity
- Ordered Structure
- Pair Distribution Function
- Pauli Repulsion
- Perfect Crystal
- Phonon
- Radial Distribution Function
- Random Coil
- Scattering
- Semiconductor Devices
- Short Range Order
- Simple Cubic Unit Cell
- Solids
- Sommerfeld Theory
- Specific Heat of a Solid
- Stress Components
- Structure of Periodic Table
- Substitutional Defect
- Symmetry in Crystals
- Translation Vector
- Translational Symmetry
- Vacancy Defect
- Van der Waals Attraction
- X Ray Scattering
- Yield Stress
- Space Physics
- Thermodynamics
- Heat Radiation
- Thermal Conductivity
- Thermal Efficiency
- Thermodynamic Diagram
- Thermodynamic Force
- Thermodynamic and Kinetic Control
- Torque and Rotational Motion
- Centripetal Acceleration and Centripetal Force
- Conservation of Angular Momentum
- Force and Torque
- Muscle Torque
- Newton's Second Law in Angular Form
- Simple Machines
- Unbalanced Torque
- Translational Dynamics
- Centripetal Force and Velocity
- Critical Speed
- Free Fall and Terminal Velocity
- Gravitational Acceleration
- Kinetic Friction
- Object in Equilibrium
- Orbital Period
- Resistive Force
- Spring Force
- Static Friction
- Turning Points in Physics
- Cathode Rays
- Discovery of the Electron
- Einstein's Theory of Special Relativity
- Electromagnetic Waves
- Electron Microscopes
- Electron Specific Charge
- Length Contraction
- Michelson-Morley Experiment
- Millikan's Experiment
- Newton's and Huygens' Theories of Light
- Photoelectricity
- Relativistic Mass and Energy
- Special Relativity
- Thermionic Electron Emission
- Time Dilation
- Wave Particle Duality of Light
- Wave Optics
- 4th Maxwell Equation
- Aberrations
- Amplitude of Wave
- Atmospheric Aberration
- Cameras
- Chromatic Aberration
- Coded Aperture
- Coma Aberration
- Converging Lens
- Convex Mirrors
- Distortion
- Diverging Lens
- Electromagnetic Energy
- Electromagnetic Momentum
- Energy and Frequency Relationship
- Energy of a Photon
- Field Curvature
- First Order Theory
- Focal Length
- Focal Points
- Geometrical Optics
- How Are Electromagnetic Waves Produced
- Human Eyes
- Image Formed by Plane Mirror
- Intensity and Amplitude Relationship
- Lens Maker Equation
- Light Particles
- Light Prism
- Light Wave
- Linear Wave
- Magnifiers
- Momentum of a Photon
- Non Linear Wave
- Oblique Ray Method
- Optical Instruments
- Parallel Beam
- Path of Light
- Pinhole Cameras
- Plancks Law
- Plane Electromagnetic Wave
- Principal Point
- Prism Light Refraction
- Propagation of Light
- Radiation Pressure
- Rectilinear Propagation
- Reflection at a Spherical Surface
- Spherical Aberration
- Spherical Mirror
- Standing Electromagnetic Waves
- Superposition of Waves
- Taylor Expansions
- Telephoto Lenses
- The Nature of Colour
- Thick Lens Formula
- Thick Lenses
- Third Order Theory
- Total Internal Reflection
- Virtual Image
- Wave Equations
- X Ray Telescope
- Waves Physics
- Acoustics
- Applications of Ultrasound
- Applications of Waves
- Capillary Waves
- Diffraction
- Diffraction Gratings
- Doppler Effect in Light
- Earthquake Shock Waves
- Echolocation
- Fourier Analysis Waves
- Gravity Waves
- Group Velocity
- Harmonics
- Image Formation by Lenses
- Interference
- Light
- Longitudinal Wave
- Longitudinal and Transverse Waves
- Love Waves
- Mirror
- Oscilloscope
- Phase Difference
- Phase Velocity
- Polarisation
- Progressive Waves
- Properties of Waves
- Ray Diagrams
- Ray Tracing Mirrors
- Rayleigh Waves
- Reflection
- Refraction
- Refraction at a Plane Surface
- Resonance in Sound Waves
- Seismic Waves
- Snell's law
- Spectral Colour
- Standing Waves
- Stationary Waves
- Superposition of Two Waves
- Total Internal Reflection in Optical Fibre
- Transverse Wave
- Ultrasound
- Vibrating String
- Water Wave
- Wave Characteristics
- Wave Packet
- Wave Speed
- Waves in Communication
- X-rays
- Work Energy and Power
- Conservative Forces and Potential Energy
- Dissipative Force
- Energy Dissipation
- Energy in Pendulum
- Force and Potential Energy
- Force vs. Position Graph
- Orbiting Objects
- Potential Energy Graphs and Motion
- Spring Potential Energy
- Total Mechanical Energy
- Translational Kinetic Energy
- Work Energy Theorem
- Work and Kinetic Energy

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenYou may well have heard someone say that "we are all made of stardust" - but did you know this is actually true? Many of the elements our bodies contain can only be produced in a supernova, which is an enormous explosion some stars will produce when they die. These elements are scattered across the universe by these explosions, and some eventually end up being a part of you. Other stars may not die in a supernova but might instead turn into dwarf stars. This article explains the various life cycles a star could have, and what determines how a star will behave.

Stars are large celestial bodies that mainly consist of hydrogen and helium, the two lightest elements. They can have different sizes and temperatures and produce energy through continuous nuclear fusion reactions occurring in their core. We benefit from the energy released by our local star, the sun, as it heats and illuminates the earth. Stars are formed in a nebula and go through different stages in their life cycle depending on their mass. These stages will be explained in more detail below.

The life cycle of a star is the sequence of events that takes place in the life of a star from its formation to its end. The life cycle of stars depends on their mass. All stars, regardless of their mass, are formed and behave similarly until they reach their main sequence stage. The initial three stages that occur for a star to enter its main sequence are described below.

We will now describe the stages of a star's formation in detail.

A star is formed from a **nebula, **which is a huge cloud of interstellar dust and a mixture of gases, mostly comprising hydrogen (the most abundant element in the universe). The nebula is so vast that the weight of the dust and gases start to cause the nebula to contract under its own Gravity.

Fig. 1: The Carina nebula is visible in a remote location in the southern sky near Indonesia. It is approximately 8,500 light-years from earth.

Gravity pulls the dust and gas particles together to form **clusters** in the nebula, which results in particles gaining kinetic energy and colliding with each other. This process is known as **accretion**. The kinetic energy of the gas and dust particles increases the temperature of matter in the nebula clusters to millions of degrees Celsius. This forms a **protostar**, an infant star**.**

Once a protostar has reached a high enough temperature through accretion, nuclear fusion of hydrogen to helium begins in its core. This **main sequence** begins once the temperature of the protostar core reaches around 15 million degrees Celsius. The nuclear fusion reactions release energy, which produces heat and Light, maintaining the core temperature so the fusion reaction is self-sustaining.

The nuclear fusion reaction in a star's core fuses two hydrogen isotopes to form helium and large amounts of energy in the form of **neutrino Radiation**.

\[^2_1H+^3_1H=^4_2He+^1_0n\]

Experimental nuclear fusion reactors are being developed by scientists to try to replicate this process on earth as a source of clean energy!

During the main sequence stage, an equilibrium is achieved in the star. The outward Force created from the expanding Pressure due to nuclear reactions is balanced with the inward gravitational force trying to collapse the star under its own mass. This is the most stable stage in a star's life cycle, as the star reaches a constant size where the outward pressure balances the gravitational contraction.

If the protostar mass is not large enough, it never gets hot enough for nuclear fusion to occur - therefore the star does not emit Light or heat and forms what we call a **brown dwarf,** which is a **substellar object. **

A **substellar object** is an astronomical object that is not large enough to sustain the nuclear fusion of hydrogen.

A star spends the majority of its lifespan in the main sequence, ranging from millions to billions of years depending on the mass of the star.

All stars follow a similar initial lifecycle, however, a star's behaviour following the main sequence is highly dependent on its **mass**. At GCSE level, we consider two general mass categories of stars; sun-like stars and massive stars. To categorise the masses of stars they are often measured in terms of the mass of our Sun.

If the mass of a star is at least

**8 to 10 times**the mass of the Sun, the star is considered to be a**massive star**.If the mass of a star is more similar to the size of the Sun, the star is considered to be a

**sun-like star**.

Stars with larger masses are much hotter, appearing brighter in the sky - however, they also burn through their hydrogen fuel much faster, meaning their lifespans are much shorter than average stars. Because of this, large hot stars are also the rarest.

The colour of a star is determined by its temperature. High-temperature stars will appear blue, and low-temperature stars will appear redder. The Sun has a surface temperature of 5,500 degrees Celsius, hence it appears yellow.

After several billion years of main sequence behaviour, low-mass, sun-like stars use up the majority of the hydrogen supply in their cores and the nuclear fusion to helium stops. However, the star still contains lots of hydrogen in its outer layers, and fusion begins to occur here instead - heating up the star and expanding it significantly. As the star expands it forms a **red giant**. At this point, other nuclear fusion reactions begin to occur in the core which fuses the helium into heavier elements such as carbon and oxygen - however, these reactions produce less energy and the star begins to cool.

As the rate of fusion reaction eventually slows to a stop and the temperature decreases, gravity once again becomes the dominant Force and the red giant may collapse in on itself to form a **white dwarf**. The temperature of a white dwarf is significantly lower, in the region of hundreds of thousands of degrees. At this point, the star's life is over and the white dwarf continues to cool down until eventually it no longer emits heat or light and is known as a **black dwarf**. The flow diagram shown below illustrates the life cycle of a sun-like star on the left side.

The time required for a white dwarf to cool enough to become a black dwarf is estimated to be longer than the current calculated age of the universe. Therefore, scientists predict black dwarfs cannot exist in the universe yet.

Large stars also expand when the hydrogen supply in their core runs out and fusion reactions occur in the outer layers of the star. The heaviest element that can be produced in the main sequence stage of a star is **iron**, as fusion reactions combining energy heavier than iron no longer release energy. A massive star will expand into a **red supergiant**, which is the largest type of star we know of. As massive stars burn their hydrogen fuel much more quickly, the red supergiant will collapse rapidly when it eventually runs out of fuel.

The extreme temperatures and pressures created by the rapid collapse cause a massive explosion of the outer layers of the star. This explosion has the conditions for fusion reactions to produce elements even heavier elements than iron, such as gold. This cosmic explosion is known as a **supernova.**

Planet earth (and your body!) contain elements that are heavier than Iron. This indicates that Earth was formed from the elements created during the supernova of another star.

The supernova ejects its outer layers, scattering the elements produced into space and forming a new cloud of gases which will eventually collapse and form new stars and planets. The dense core of the star remains and can form different objects depending on its mass. If the surviving core of the star is around 3 solar masses, it will contract due to gravity and form an incredibly dense core comprised of neutrons known as a **Neutron star.**

If the surviving core is greater than three solar masses, it will also collapse due to gravity into a very small point of infinite density forming **a black hole**. The gravitational pull of a black hole is so powerful that not even light can escape its pull.

- Stars have different sizes, which determine how their life cycle progresses.
- Stars are born in a nebula and die when they run out of fuel to supply nuclear reactions in the core strong enough to balance their own gravity.
- Low mass stars evolve into red giants and high mass stars evolve into red supergiant.
- Red giants eventually cool to become black dwarfs over incredibly long amounts of time.
- Red super giants eventually explode in a supernova and become either neutron stars or black holes.
- Elements from helium to iron are produced by the fusion reactions that occur in stars.
- Elements heavier than iron are only produced in supernovas.

**or** black hole.

The common four stages in a life cycle of a star include:

- The protostar formation in a nebula
- Protostar accretion and heating
- Main sequence stage
- Expansion into a red giant.

Following this, the mass of the star determines if it will die as a dwarf star or explode in a supernova.

Flashcards in The Life Cycle of a Star12

Start learningWhat is the life cycle of a star?

The life cycle of a star is the sequence of events that take place in the life of a star from its birth to its end

Which of the following is the main factor which determines the life cycle of a star?

Mass

Which of the following is valid?

The larger the mass of a star the shorter its life cycle.

How long does the main sequence of a low mass star last?

Several billion years

Are black dwarfs visible with telescopes?

No, as black dwarfs cannot exist in the universe yet as the time needed for a star to become a black dwarf is longer then the current age of the universe. Even when they do eventually exist, black dwarfs do not emit light so would not be visible to the eye through a telescope.

What is a protostar?

A protostar is a dense body of gas which forms in a nebula due to the gas and dust contracting under its own gravity, a process known as **accretion**. Over time accretion raises the temperature of the protostar until it becomes hot enough to sustain nuclear fusion reactions in its core.

Already have an account? Log in

Open in App
More about The Life Cycle of a Star

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Mock-Exams
- Smart Note-Taking

Sign up to highlight and take notes. It’s 100% free.

Save explanations to your personalised space and access them anytime, anywhere!

Sign up with Email Sign up with AppleBy signing up, you agree to the Terms and Conditions and the Privacy Policy of StudySmarter.

Already have an account? Log in