How are the temperatures of stars determined using stellar spectral classes?
The temperatures of stars are determined using stellar spectral classes by analysing the absorption lines present within a star's spectrum. Each class, designated by letters O, B, A, F, G, K, M, L, T, and Y, corresponds to a temperature range, with O being the hottest and Y the coolest.
What factors influence the colours we observe in different stellar spectral classes?
The colours observed in different stellar spectral classes are primarily influenced by the temperature of a star's surface. Hotter stars emit more blue light and appear bluer, while cooler stars emit more red light, appearing redder. These differences in temperature result in the varied colour spectrum of stars observed.
What are the characteristics that define each of the stellar spectral classes?
Stellar spectral classes are defined by temperature, colour, and spectral lines. From hottest to coolest, they are O (blue, ionised helium lines), B (blue-white, neutral helium lines), A (white, strong hydrogen lines), F (yellow-white, weaker hydrogen lines), G (yellow, ionised metals), K (orange, neutral metals), and M (red, titanium oxide).
What is the significance of the Morgan-Keenan (MK) system in categorising stellar spectral classes?
The Morgan-Keenan (MK) system refines the classification of stars beyond the basic OBAFGKM spectral types by adding luminosity classes, providing a more detailed description of a star's temperature and evolutionary stage on the Hertzsprung-Russell diagram, thereby enhancing our understanding of stellar attributes and lifecycles.
How do astronomers use absorption lines in stellar spectra to classify stars into different spectral classes?
Astronomers classify stars by analysing the absorption lines in their spectra, which indicate the presence of specific elements and compounds. The pattern and strength of these lines correspond to the star's temperature and composition, enabling their categorisation into different spectral classes (O, B, A, F, G, K, M) from hottest to coolest.