X-Ray Imaging

X-rays are high-energy electromagnetic waves with small wavelengths that can pass through many materials. They are used in imaging and medical physics.

X-Ray Imaging X-Ray Imaging

Create learning materials about X-Ray Imaging with our free learning app!

  • Instand access to millions of learning materials
  • Flashcards, notes, mock-exams and more
  • Everything you need to ace your exams
Create a free account
Table of contents

    What is x-ray imaging?

    X-rays are electromagnetic waves that have wavelengths varying between 0.01 and 10 nanometres (nm). This means that the frequency and energy of these waves are high. In fact, they are high enough for x-ray radiation to be a type of ionising radiation.

    X-rays are used in medical physics for x-ray imaging. This imaging technique uses a small amount of controlled radiation to produce images of the human body’s interior.

    Because various organs absorb radiation differently, images reveal different areas of our body in either black or white.

    The process of producing x-ray images

    When a negatively charged electrode is heated, it causes the electrons to be emitted from it, which produces energy. In x-ray imaging, this energy is directed towards a metal plate at high velocity. When the energy collides with the atoms in the plate, x-rays are created.

    X-ray imaging, x-ray machine, StudySmarterAn x-ray machine.

    The process begins with the patient lying down on or standing up in front of a cassette. This cassette includes a film that is exposed to the x-ray wave. First, the x-ray wave enters the body, passing through organs, muscles, and bones. As the soft tissue cannot absorb the electromagnetic wave, it passes through and leaves the film under or behind the patient exposed, which leads to these areas appearing in black in the final image.

    The bones and hard tissues absorb the electromagnetic x-ray wave so it cannot get through to the film as easily, which makes these areas appear in light grey or white in the image.

    X-ray imaging, neck x-ray, StudySmarterA neck x-ray scan.

    What are the applications of X-ray imaging?

    X-ray imaging has applications in medical, dental, and industrial fields. Most of these applications are based on the x-ray’s ability to pass through matter. In medical physics, x-ray imaging is used for a variety of purposes, such as getting an image of broken bones, swallowed objects, lung infections, or damage to bones from arthritis. X-rays are also used with CT scanners to help achieve a layer-by-layer image.

    In industry, x-ray imaging can help to analyse paintings to reveal their age or underlying brushstroke methods to identify or verify the artist.

    Another common use of x-ray imaging is to scan passengers or luggage at airports or malls. When used for luggage, the machine has a detector that detects the x-rays after they pass through the object. The x-rays are then sent through a filter, which filters out the lower-energy x-rays while the high-energy x-rays are detected by a second detector. A computer compares the data yielded by the two detectors to better depict low-energy items, such as most biological compounds.

    Since different objects absorb different amounts of x-rays, these differences can be seen on the screen used by the operator. There are three primary categories depending on the spectrum of energy that passes through the object: organic, inorganic, and metal.

    X-ray imaging. StudySmarterX-ray imaging being used in an airport luggage scanner.

    Applications of x-rays in materials and chemistry sampling

    There are three x-ray imaging techniques used for a variety of purposes. They are: x-ray fluorescence spectrometry, particle-induced x-ray emission (PIXE) spectrometry, and x-ray diffraction.

    • X-ray fluorescence spectrometry is a non-lethal analytical method for identifying elements and their quantities in solid, powdered, and liquid samples.
    • Particle-induced x-ray emission (PIXE) is an analytical approach based on the theory of x-ray emission. Also known as proton-induced x-ray emission, this is a strong, non-destructive analytical method that can identify all elements from sodium to uranium in solids, liquids, thin films, and aerosol filter materials.
    • X-ray diffraction or XRD is a flexible, non-destructive analytical method for identifying and quantifying the many crystalline forms of chemicals found in powdered and solid samples, known as phases.

    X-Ray Imaging - Key takeaways

    • X-rays are high-energy electromagnetic waves with short wavelengths that can pass through many materials.
    • The three techniques for x-ray imaging in materials and chemistry sampling are x-ray fluorescence spectrometry, particle-induced x-ray emission (PIXE) spectrometry, and x-ray diffraction (XRD).

    • Some of the common applications of x-ray imaging include scanning the human body for fractured bones, ingested objects, arthritis-related bone deterioration, and lung infections; scanning passengers or luggage at airports or malls; and analysing paintings.

    • In the process of x-ray imaging in medical fields, the x-ray wave enters the body, passing through organs and muscles. As the soft tissue cannot absorb electromagnetic waves, they pass through, leaving the film under or behind the patient exposed, which leads to these areas appearing in black in the image. Bones and hard tissue, which absorb the electromagnetic x-ray wave, by contrast, appear in light grey or white.

    Frequently Asked Questions about X-Ray Imaging

    Why is X-ray imaging done?

    X-ray imaging is done in order to create images of the interior of the human body. It is mostly done for the purpose of getting a view of fractured bones, arthritis-related bone deterioration, ingested objects, and lung infections.

    How are x rays used in medical imaging?

    First, the x-ray wave enters the body, passing through organs and muscles. As the soft tissue cannot absorb electromagnetic waves, they pass through, leaving the film under or behind the patient exposed, which leads to these areas appearing in black in the final image. The bones and hard tissues, by contrast, absorb the electromagnetic x-ray wave so it cannot get through to the film as easily, which makes these areas appear in light grey or white in the image.

    How are x-ray images formed?

    The varying reduction of the x-ray beam inside a patient’s body generates a picture. Increased reduction of objects cast shadows. An object’s picture contrast relies on its x-ray beam reduction.

    Test your knowledge with multiple choice flashcards

    Which of the following is the wavelength range of x-ray waves?

    Which of the following are not classified as ionising radiation?

    In x-ray imaging, if the x-ray wave is not absorbed by an object, in which colour does that section appear in the final image?

    Next
    1
    About StudySmarter

    StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    StudySmarter Editorial Team

    Team X-Ray Imaging Teachers

    • 5 minutes reading time
    • Checked by StudySmarter Editorial Team
    Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our StudySmarter App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our StudySmarter App