StudySmarter: Study help & AI tools

4.5 • +22k Ratings

More than 22 Million Downloads

Free

Reaction Turbine

Delve into the dynamic world of engineering with a comprehensive exploration of the reaction turbine. Understand its basic principles, functions, and different types as you explore this essential piece of technology. Discover practical application examples and draw comparisons with impulse turbines. Uncover factors influencing its efficiency and learn about measures to enhance the function of reaction turbines. This detailed, educational journey into the heart of kinetic energy conversion promises to enlighten and inform.

Explore our app and discover over 50 million learning materials for free.

- Design Engineering
- Engineering Fluid Mechanics
- Aerofoil
- Atmospheric Drag
- Atmospheric Pressure
- Atmospheric Waves
- Axial Flow Pump
- Bernoulli Equation
- Boat Hull
- Boundary Layer
- Boussinesq Approximation
- Buckingham Pi Theorem
- Capillarity
- Cauchy Equation
- Cavitation
- Centrifugal Pump
- Circulation in Fluid Dynamics
- Colebrook Equation
- Compressible Fluid
- Continuity Equation
- Continuous Matter
- Control Volume
- Convective Derivative
- Coriolis Force
- Couette Flow
- Density Column
- Dimensional Analysis
- Dimensional Equation
- Dimensionless Numbers in Fluid Mechanics
- Dispersion Relation
- Drag on a Sphere
- Dynamic Pump
- Dynamic Similarity
- Dynamic Viscosity
- Eddy Viscosity
- Energy Equation Fluids
- Equation of Continuity
- Euler's Equation Fluid
- Eulerian Description
- Eulerian Fluid
- Flow Over Body
- Flow Regime
- Flow Separation
- Fluid Bearing
- Fluid Density
- Fluid Dynamic Drag
- Fluid Dynamics
- Fluid Fundamentals
- Fluid Internal Energy
- Fluid Kinematics
- Fluid Mechanics Applications
- Fluid Pressure in a Column
- Fluid Pumps
- Fluid Statics
- Froude Number
- Gas Molecular Structure
- Gas Turbine
- Hagen Poiseuille Equation
- Heat Transfer Fluid
- Hydraulic Press
- Hydraulic Section
- Hydrodynamic Stability
- Hydrostatic Equation
- Hydrostatic Force
- Hydrostatic Force on Curved Surface
- Hydrostatic Force on Plane Surface
- Hydrostatics
- Impulse Turbine
- Incompressible Fluid
- Internal Flow
- Internal Waves
- Inviscid Flow
- Inviscid Fluid
- Ion Thruster
- Irrotational Flow
- Jet Propulsion
- Kinematic Viscosity
- Kutta Joukowski Theorem
- Lagrangian Description
- Lagrangian Fluid
- Laminar Flow in Pipe
- Laminar vs Turbulent Flow
- Laplace Pressure
- Lift Force
- Linear Momentum Equation
- Liquid Molecular Structure
- Mach Number
- Magnetohydrodynamics
- Manometer
- Mass Flow Rate
- Material Derivative
- Momentum Analysis of Flow Systems
- Moody Chart
- No Slip Condition
- Non Newtonian Fluid
- Nondimensionalization
- Nozzles
- Open Channel Flow
- Orifice Flow
- Pascal Principle
- Pathline
- Piezometer
- Pipe Flow
- Piping
- Pitot Tube
- Plasma
- Plasma Parameters
- Plasma Uses
- Pneumatic Pistons
- Poiseuille Flow
- Positive Displacement Pump
- Positive Displacement Turbine
- Potential Flow
- Prandtl Meyer Expansion
- Pressure Change in a Pipe
- Pressure Drag
- Pressure Field
- Pressure Head
- Pressure Measurement
- Propeller
- Pump Characteristics
- Pump Performance Curve
- Pumps in Series vs Parallel
- Reaction Turbine
- Relativistic Fluid Dynamics
- Reynolds Experiment
- Reynolds Number
- Reynolds Transport Theorem
- Rocket Propulsion
- Rotating Frame of Reference
- Rotational Flow
- Sail Aerodynamics
- Second Order Wave Equation
- Shallow Water Waves
- Shear Stress in Fluids
- Shear Stress in a Pipe
- Ship Propeller
- Shoaling
- Shock Wave
- Siphon
- Soliton
- Speed of Sound
- Steady Flow
- Steady Flow Energy Equation
- Steam Turbine
- Stokes Flow
- Streakline
- Stream Function
- Streamline Coordinates
- Streamlines
- Streamlining
- Strouhal Number
- Superfluid
- Supersonic Flow
- Surface Tension
- Surface Waves
- Timeline
- Tokamaks
- Torricelli's Law
- Turbine
- Turbomachinery
- Turbulence
- Turbulent Flow in Pipes
- Turbulent Shear Stress
- Uniform Flow
- Unsteady Bernoulli Equation
- Unsteady Flow
- Ursell Number
- Varied Flow
- Velocity Field
- Velocity Potential
- Velocity Profile
- Velocity Profile For Turbulent Flow
- Velocity Profile in a Pipe
- Venturi Effect
- Venturi Meter
- Venturi Tube
- Viscosity
- Viscous Liquid
- Volumetric Flow Rate
- Vorticity
- Wind Tunnel
- Wind Turbine
- Wing Aerodynamics
- Womersley Number
- Engineering Mathematics
- Engineering Thermodynamics
- Materials Engineering
- Professional Engineering
- Solid Mechanics
- What is Engineering

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenDelve into the dynamic world of engineering with a comprehensive exploration of the reaction turbine. Understand its basic principles, functions, and different types as you explore this essential piece of technology. Discover practical application examples and draw comparisons with impulse turbines. Uncover factors influencing its efficiency and learn about measures to enhance the function of reaction turbines. This detailed, educational journey into the heart of kinetic energy conversion promises to enlighten and inform.

A reaction turbine is a type of turbine that utilizes the principle of Newton's third law, "For every action, there is an equal and opposite reaction". Unlike impulse turbines where the fluid must have kinetic energy before interacting with the turbine, reaction turbines generate power through the combined energy of a pressurised fluid's velocity and pressure.

Think of blowing air on a pinwheel. The pinwheel spins because the moving air (the fluid) applies pressure to the blades of the pinwheel (the turbine), causing it to move (generate mechanical power).

- Casing: A pressure vessel encasing the turbine to contain the working fluid.
- Rotor: The rotating part of the turbine where energy conversion takes place.
- Blades (also known as buckets or vanes): The components that the fluid strikes to make the rotor move.

You've likely seen or used a reaction turbine without realising it. Windmills, for instance, are a primary example of a reaction turbine; the wind, a fluid, spins the blades, transmutating kinetic energy into mechanical energy. Another common example is the water wheel seen in many landscapes and garden designs; water (the fluid) from the top of the wheel transmits its kinetic and potential energy onto the wheel (the turbine), causing it to rotate.

Moreover, in geothermal power stations, steam from the earth's crust used as the fluid for the reaction turbine. The utilization of reaction turbines also extends to maritime transport where they play a crucial role in the propulsion systems of many ships.

- Francis Turbine
- Kaplan Turbine
- Propeller Turbine

- Reaction turbine is a type of turbine that utilizes the principle of Newton's third law and generates power through the combined energy of a pressurised fluid's velocity and pressure.
- It contains main components such as casing, a rotor and blades. The fluid strikes the blades of the rotor causing the rotor to move, converting the fluid's kinetic energy into mechanical energy.
- Reaction turbines have a wide range of applications in daily life and industry, like windmills or water wheels as seen in many landscapes and garden designs. They are also crucial for power generation in hydroelectric and geothermal power stations.
- Common types of reaction turbines are Francis Turbine, Kaplan Turbine and Propeller Turbine. Each of these models varies in characteristics, such as the design, rotational speed, flow rates, influencing their performance and efficiency.
- The difference between impulse and reaction turbines is vital in engineering. While impulse turbines derive their energy purely from the kinetic energy of the fluid, reaction turbines derive their energy from both the kinetic and the pressure energy of the fluid.
- Several factors can influence the efficiency of reaction turbines including rates of flow and fluid dynamics, rotor and blade design, relative velocity; efficiency can be improved by properly managing the fluid flow, refining the design of the rotor and its blades, and controlling the relative velocity of the fluid.

A reaction turbine is a type of turbine that uses the principle of Newton's third law of motion - action and reaction. It converts the potential energy of water, steam or gas into mechanical energy, where both pressure and velocity decrease during the flow through the turbine.

Reaction turbines work by converting the potential energy present in pressurised fluid into mechanical energy. As the fluid drops its pressure through the turbine blades, it creates a reactive force in the opposite direction, moving the blades and generating work.

Francis turbine is called a reaction turbine because its operation relies on the reaction principle. The water pressure changes as it passes through the turbine, causing a reactionary force moving the blades, generating power.

A common example of a reaction turbine is the Francis turbine, widely used in hydroelectric power plants for its high efficiency over a broad range of flow and head conditions.

A 50% Reaction Turbine is commonly referred to as a Parsons Turbine, named after its inventor Sir Charles Parsons.

What is a reaction turbine and on which principles does it work?

A reaction turbine is a machine that features rotor blades. It generates force to move the rotor from the change in momentum of the fluid passing through the rotor, and the reaction force from accelerating fluid in the opposite direction of the output shaft. It works on Newton's Third Law of Motion, and the conservation of angular momentum.

What are some practical examples of reaction turbines in the real world?

Reaction turbines are found in steam power plants, hydropower stations, and marine propellers. Examples include the radial-flow Francis Turbines used in hydropower plants and axial-flow Kaplan Turbines used in marine propellers and wind turbines.

How does a reaction turbine gain its impetus for rotation?

A reaction turbine gains its impetus for rotation from the change in fluid pressure as it passes through the rotor blades. This fluid can be water or steam, and enters the turbine through a stator and exits through the rotor.

What are the two main classes of reaction turbines based on the orientation of their rotary axis?

The two main classes of reaction turbines are radial flow turbines and axial flow turbines.

What are the two types of reaction turbines based on the operating fluid's phase?

The two types of reaction turbines based on the operating fluid's phase are steam turbines and hydraulic turbines.

What is the functionality of Francis, Kaplan and Propeller turbines?

The Francis Turbine is for medium-head and medium-discharge, the Kaplan Turbine is for low-head but high-discharge, and the Propeller Turbine is used for larger flow rates and lower heads.

Already have an account? Log in

Open in App
More about Reaction Turbine

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Mock-Exams
- Smart Note-Taking

Sign up to highlight and take notes. It’s 100% free.

Save explanations to your personalised space and access them anytime, anywhere!

Sign up with Email Sign up with AppleBy signing up, you agree to the Terms and Conditions and the Privacy Policy of StudySmarter.

Already have an account? Log in