Thermodynamic System

Discover an in-depth understanding of the thermodynamic system in this comprehensive guide. You'll explore the origins, key concepts, and real-world interpretations of thermodynamic systems, shedding light on this key element of engineering. The article takes you through insightful examples, broad applications, comprehensive system formulas and the different types of thermodynamic systems. This knowledge will provide a strong foundation for both professionals and students interested in the field of engineering, helping to decode the complex world of thermodynamic systems.

Explore our app and discover over 50 million learning materials for free.

- Design Engineering
- Engineering Fluid Mechanics
- Engineering Mathematics
- Engineering Thermodynamics
- Absolute Temperature
- Adiabatic Expansion
- Adiabatic Expansion of an Ideal Gas
- Adiabatic Lapse Rate
- Adiabatic Process
- Application of First Law of Thermodynamics
- Availability
- Binary Cycle
- Binary Mixture
- Bomb Calorimeter
- Carnot Cycle
- Carnot Theorem
- Carnot Vapor Cycle
- Chemical Energy
- Chemical Potential
- Chemical Potential Ideal Gas
- Clausius Clapeyron Equation
- Clausius Inequality
- Clausius Theorem
- Closed System Thermodynamics
- Coefficient of Thermal Expansion
- Cogeneration
- Combined Convection and Radiation
- Combined Cycle Power Plant
- Combustion Engine
- Compressor
- Conduction
- Conjugate Variables
- Continuous Combustion Engine
- Continuous Phase Transition
- Convection
- Dead State
- Degrees of Freedom Physics
- Differential Convection Equations
- Diffuser
- Diffusion Equation
- Double Tube Heat Exchanger
- Economizer
- Electrical Work
- Endothermic Reactions
- Energy Degradation
- Energy Equation
- Energy Function
- Enthalpy
- Enthalpy of Fusion
- Enthalpy of Vaporization
- Entropy Change for Ideal Gas
- Entropy Function
- Entropy Generation
- Entropy Gradient
- Entropy and Heat Capacity
- Entropy and Irreversibility
- Entropy of Mixing
- Equation of State of a Gas
- Equation of State of an Ideal Gas
- Equations of State
- Exergy
- Exergy Analysis
- Exergy Efficiency
- Exothermic Reactions
- Expansion
- Extensive Property
- External Combustion Engine
- Feedwater Heater
- Fins
- First Law of Thermodynamics Differential Form
- First Law of Thermodynamics For Open System
- Flow Process
- Fluctuations
- Forced Convection
- Four Stroke Engine
- Free Expansion
- Free Expansion of an Ideal Gas
- Fundamental Equation
- Fundamentals of Engineering Thermodynamics
- Gases
- Gibbs Duhem Equation
- Gibbs Free Energy
- Gibbs Paradox
- Greenhouse Effect
- Heat
- Heat Capacity
- Heat Equation
- Heat Exchanger
- Heat Generation
- Heat Pump
- Heat and Work
- Helmholtz Free Energy
- Hydrostatic Transmission
- Initial Conditions
- Intensive Property
- Intensive and Extensive Variables
- Internal Energy of a Real Gas
- Irreversibility
- Isentropic Efficiency
- Isentropic Efficiency of Compressor
- Isentropic Process
- Isobaric Process
- Isochoric Process
- Isolated System
- Isothermal Process
- Johnson Noise
- Joule Kelvin Expansion
- Joule-Thompson Effect
- Kinetic Theory of Ideal Gases
- Landau Theory of Phase Transition
- Linear Heat Conduction
- Liquefaction of Gases
- Macroscopic Thermodynamics
- Maximum Entropy
- Maxwell Relations
- Mechanism of Heat Transfer
- Metastable Phase
- Moles
- Natural Convection
- Nature of Heat
- Negative Heat Capacity
- Negative Temperature
- Non Equilibrium State
- Nuclear Energy
- Nucleation
- Nusselt Number
- Open System Thermodynamic
- Osmotic Pressure
- Otto Cycle
- Partition Function
- Peng Robinson Equation of State
- Polytropic Process
- Potential Energy in Thermodynamics
- Power Cycle
- Power Plants
- Pressure Volume Work
- Principle of Minimum Energy
- Principles of Heat Transfer
- Quasi Static Process
- Ramjet
- Real Gas Internal Energy
- Reciprocating Engine
- Refrigeration Cycle
- Refrigerator
- Regenerative Rankine Cycle
- Reheat Rankine Cycle
- Relaxation Time
- Reversibility
- Reversible Process
- Rotary Engine
- Sackur Tetrode Equation
- Specific Volume
- Steady State Heat Transfer
- Stirling Engines
- Stretched Wire
- Surface Thermodynamics
- System Surroundings and Boundary
- TdS Equation
- Temperature Scales
- Thermal Boundary Layer
- Thermal Diffusivity
- Thermodynamic Equilibrium
- Thermodynamic Limit
- Thermodynamic Potentials
- Thermodynamic Relations
- Thermodynamic Stability
- Thermodynamic State
- Thermodynamic System
- Thermodynamic Variables
- Thermodynamics of Gases
- Thermoelectric
- Thermoelectric Effect
- Thermometry
- Third Law of Thermodynamics
- Throttling Device
- Transient Heat Transfer
- Triple Point and Critical Point
- Two Stroke Diesel Engine
- Two Stroke Engine
- Unattainability
- Van der Waals Equation
- Vapor Power System
- Variable Thermal Conductivity
- Wien's Law
- Zeroth Law of Thermodynamics
- Materials Engineering
- Professional Engineering
- Solid Mechanics
- What is Engineering

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenDiscover an in-depth understanding of the thermodynamic system in this comprehensive guide. You'll explore the origins, key concepts, and real-world interpretations of thermodynamic systems, shedding light on this key element of engineering. The article takes you through insightful examples, broad applications, comprehensive system formulas and the different types of thermodynamic systems. This knowledge will provide a strong foundation for both professionals and students interested in the field of engineering, helping to decode the complex world of thermodynamic systems.

A thermodynamic system is defined as a part of the universe set aside for studying properties and phenomena related to the transfer and conversion of thermal energy.

For an example, a steam engine is a thermodynamic system. When coal is burned, it heats up the water in the boiler, producing steam. The energy produced is then transferred to do useful work, such as moving a piston or turning a wheel.

**System Boundary:**The system boundary is the imaginary surface that separates the system from its surroundings.**Types of Systems:**There are mainly three types of thermodynamic systems. The Open System where matter and energy can cross the system boundary, Closed System where only energy can cross the boundary, and the Isolated System where neither energy nor matter can cross the boundary.**State of a System:**The state of a system is defined by its properties. Properties can be either intensive (not dependent on the size of the system like temperature) or extensive (dependent on the size of the system like volume).

On a larger scale, even the Earth can be considered as a thermodynamic system. Scientists often classify Earth as an open system, given it exchanges both energy (in the form of heat and light from the Sun) and matter (like meteorites entering the Earth's atmosphere) with its surroundings.

System |
Description |

Gas inside a cylinder | This is a common example of a closed system as the gas does not leave but its temperature and pressure can change with the addition of heat. |

Car Engine | An example of an open system where both matter (air, fuel) and energy (heat, work) cross the boundary. |

Thermos Flask | This is an example of an almost isolated system where neither matter nor energy is exchanged with the surroundings. |

**Refrigerator: **Within the refrigerator, a refrigerant (usually a fluid) travels through a cycle of evaporation and condensation. This refrigerant absorbs heat from the refrigerator's interior during evaporation and releases it outside during condensation. Therefore, the refrigerator interior cools down, preserving the food items inside. This is a prime example of a thermodynamic system in real-life.

During the **Rankine cycle**, water is pressurized and vaporized using heat from a source (like burning coal). The high-pressure steam then drives a turbine, which runs a generator to produce electricity. The steam is cooled and condensed back into water before restarting the cycle.

Industry |
Thermodynamic System Application |

Power Generation | Conversion of thermal energy into mechanical work to generate electricity. |

Automotive | Internal combustion engines utilising fuel-air mixtures for vehicle propulsion. |

Refrigeration and Air Conditioning | Manipulation of heat transfer to maintain desired temperature conditions. |

IT Industry | Cooling mechanisms for servers in data centres. |

- \(\Delta U\) denotes the change in internal energy of the system.
- \(Q\) stands for the heat added to the system.
- \(W\) represents the work done by the system.

An **isolated system** neither exchanges matter nor energy with its surroundings. In isolation, the total quantities of matter and energy remain constant. To visualise this, think of a thermos flask with a hot beverage inside - ideally, it neither gains nor loses heat or mass.

A **closed system** can exchange energy (in the form of heat, work, or both) but not matter with its surroundings. A pressure cooker provides an apt example - energy in the form of heat can escape, but its contents cannot.

An **open system** can exchange both matter and energy with its surroundings. Many real world systems operate as open systems like a refrigerator or a water boiler, which both exchange matter (water or refrigerant) and energy (heat) with their surroundings.

System Type | Mass Transfer | Heat Transfer | Work Exchange |

Isolated | No | No | No |

Closed | No | Yes | Yes |

Open | Yes | Yes | Yes |

- Thermodynamic System Meaning: Thermodynamic systems are typically described by properties such as pressure, volume, and temperature. Thermodynamics isn't just limited to theoretical applications; its principles are reflected in everyday scenarios.
- Thermodynamic System Examples: Gas inside a cylinder, car engine, and thermos flask are examples of closed, open, and almost isolated thermodynamic systems, respectively. Other examples are the human body, the refrigeration cycle in a refrigerator, and the Rankine cycle in power plants.
- Thermodynamic System Applications: Thermodynamic systems are indispensable in sectors like power generation, refrigeration, automotive, aerospace, and even the IT industry. They are also present in daily appliances like refrigerators and boilers, and even in the human body itself.
- Thermodynamic System Formula: The process of heat transfer can be represented by the formula \( Q = mc\Delta T \). The First Law of Thermodynamics can be represented as \(\Delta U = Q - W\), and The Second Law of Thermodynamics introduces a new property called Entropy (S), and it is given by \(dS = \frac{dQ_{rev}}{T}\).
- Thermodynamic System types: These include open, closed, and isolated systems. Power generation plants represent a series of thermodynamic transformations, making the entire power plant a thermodynamic system. The internal combustion engines in vehicles are examples of open thermodynamic systems.

A thermodynamic system is a volume of space or quantity of matter in which changes in energy, temperature, or pressure are studied in thermodynamics. It interacts and exchanges energy with the surroundings outside its boundary.

The types of thermodynamic systems are: isolated systems (no exchange of energy or matter with surroundings), closed systems (energy transfer takes place but not matter), and open systems (both energy and matter transfer occur).

Entropy in a thermodynamic system measures the degree of disorder or randomness. It's used to examine energy distributions and ascertain system efficiencies. Changes in entropy can determine whether a process is reversible or irreversible. It's a fundamental concept in understanding and analysing energy transfer and conversion.

An example of a thermodynamic system is a steam turbine. Here, heat energy (from steam) is converted into mechanical work. Other examples include refrigerators and internal combustion engines, which operate based on the principles of thermodynamics.

Yes, the human body is a thermodynamic system. It consists of countless biochemical reactions driven by the laws of thermodynamics to convert energy, maintain temperature, and keep cells functioning properly.

What is a thermodynamic system in the context of engineering and physics?

A thermodynamic system is a part of the universe set aside for studying properties and phenomena related to the transfer and conversion of thermal energy.

What are three key concepts in understanding the meaning of a thermodynamic system?

The three key concepts are: system boundary, which separates the system from its surroundings, types of systems, including open, closed, and isolated, and state of a system, defined by its properties.

How are the principles of thermodynamic systems implemented in real-world scenarios?

The principles of thermodynamic systems are applied in designing refrigerators, planning efficient energy conversion processes, understanding bodily functions, and in large scale interpretations, such as viewing Earth as an open system exchanging energy and matter with its surroundings.

What is an example of a closed thermodynamic system?

A gas confined within a cylinder by a piston is an example of a closed thermodynamic system. The gas does not leave the system but its temperature and pressure can change with the addition of heat.

What thermodynamic processes occur in a refrigerator?

A refrigerator goes through isothermal (constant temperature) and adiabatic (no heat transfer) processes. Within the refrigerator, a refrigerant absorbs heat from the interior during evaporation and releases it outside during condensation.

What is a real-world application of the Rankine cycle in thermodynamics?

Power generation plants utilise the Rankine cycle. Water is pressurised and vaporised using heat from a source. The high-pressure steam drives a turbine, which runs a generator to produce electricity. The steam is then cooled and condensed back into water before restarting the cycle.

Already have an account? Log in

Open in App
More about Thermodynamic System

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Mock-Exams
- Smart Note-Taking

Sign up to highlight and take notes. It’s 100% free.

Save explanations to your personalised space and access them anytime, anywhere!

Sign up with Email Sign up with AppleBy signing up, you agree to the Terms and Conditions and the Privacy Policy of StudySmarter.

Already have an account? Log in

Already have an account? Log in

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Mock-Exams
- Smart Note-Taking

Sign up with Email

Already have an account? Log in