Exponential Form of Complex Numbers

Another day in our complex lives. You already know about complex numbers a little, the polar form of it as well. What then is the need to have another form of complex numbers? Well, you will have to go and ask Euler about that (he is probably grinning at us from up there). But for now, another form of Complex Numbers is inevitable, i.e., the **Exponential Form of Complex Numbers.**

Explore our app and discover over 50 million learning materials for free.

- Applied Mathematics
- Calculus
- Decision Maths
- Discrete Mathematics
- Geometry
- Logic and Functions
- Mechanics Maths
- Probability and Statistics
- Pure Maths
- ASA Theorem
- Absolute Convergence
- Absolute Value Equations and Inequalities
- Abstract algebra
- Addition and Multiplication of series
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebra of limits
- Algebra over a field
- Algebraic Fractions
- Algebraic K-theory
- Algebraic Notation
- Algebraic Representation
- Algebraic curves
- Algebraic geometry
- Algebraic number theory
- Algebraic topology
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Argand Diagram
- Arithmetic Sequences
- Associative algebra
- Average Rate of Change
- Banach algebras
- Basis
- Bijective Functions
- Bilinear forms
- Binomial Expansion
- Binomial Theorem
- Bounded Sequence
- C*-algebras
- Category theory
- Cauchy Sequence
- Cayley Hamilton Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Clifford algebras
- Cohomology theory
- Combinatorics
- Common Factors
- Common Multiples
- Commutative algebra
- Compact Set
- Completing the Square
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Congruence Equations
- Conic Sections
- Connected Set
- Construction and Loci
- Continuity and Uniform convergence
- Continuity of derivative
- Continuity of real valued functions
- Continuous Function
- Convergent Sequence
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Coupled First-order Differential Equations
- Cubic Function Graph
- Data Transformations
- De Moivre's Theorem
- Deductive Reasoning
- Definite Integrals
- Derivative of a real function
- Deriving Equations
- Determinant Of Inverse Matrix
- Determinant of Matrix
- Determinants
- Diagonalising Matrix
- Differentiability of real valued functions
- Differential Equations
- Differential algebra
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Dimension
- Direct and Inverse proportions
- Discontinuity
- Disjoint and Overlapping Events
- Disproof By Counterexample
- Distance from a Point to a Line
- Divergent Sequence
- Divisibility Tests
- Division algebras
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Eigenvalues and Eigenvectors
- Ellipse
- Elliptic curves
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Equicontinuous families of functions
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Fermat's Little Theorem
- Field theory
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding The Area
- First Fundamental Theorem
- First-order Differential Equations
- Forms of Quadratic Functions
- Fourier analysis
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Gram-Schmidt Process
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs And Differentiation
- Graphs Of Exponents And Logarithms
- Graphs of Common Functions
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Grothendieck topologies
- Group Mathematics
- Group representations
- Growth and Decay
- Growth of Functions
- Gröbner bases
- Harmonic Motion
- Hermitian algebra
- Higher Derivatives
- Highest Common Factor
- Homogeneous System of Equations
- Homological algebra
- Homotopy theory
- Hopf algebras
- Hyperbolas
- Ideal theory
- Imaginary Unit And Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Injective linear transformation
- Instantaneous Rate of Change
- Integers
- Integrating Ex And 1x
- Integrating Polynomials
- Integrating Trigonometric Functions
- Integration
- Integration By Parts
- Integration By Substitution
- Integration Using Partial Fractions
- Integration of Hyperbolic Functions
- Interest
- Invariant Points
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Inverse of a Matrix and System of Linear equation
- Invertible linear transformation
- Iterative Methods
- Jordan algebras
- Knot theory
- L'hopitals Rule
- Lattice theory
- Law Of Cosines In Algebra
- Law Of Sines In Algebra
- Laws of Logs
- Leibnitz's Theorem
- Lie algebras
- Lie groups
- Limits of Accuracy
- Linear Algebra
- Linear Combination
- Linear Expressions
- Linear Independence
- Linear Systems
- Linear Transformation
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition And Subtraction
- Matrix Calculations
- Matrix Determinant
- Matrix Multiplication
- Matrix operations
- Mean value theorem
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modelling with First-order Differential Equations
- Modular Arithmetic
- Module theory
- Modulus Functions
- Modulus and Phase
- Monoidal categories
- Monotonic Function
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplicative ideal theory
- Multiplying And Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Non-associative algebra
- Normed spaces
- Notation
- Number
- Number Line
- Number Systems
- Number Theory
- Number e
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations With Matrices
- Operations with Decimals
- Operations with Polynomials
- Operator algebras
- Order of Operations
- Orthogonal groups
- Orthogonality
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Hyperbolas
- Parametric Integration
- Parametric Parabolas
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Pointwise convergence
- Poisson algebras
- Polynomial Graphs
- Polynomial rings
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Determinants
- Properties of Exponents
- Properties of Riemann Integral
- Properties of dimension
- Properties of eigenvalues and eigenvectors
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic forms
- Quadratic functions
- Quadrilaterals
- Quantum groups
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Ratio and Root test
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Rearrangement
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Reduced Row Echelon Form
- Reducible Differential Equations
- Remainder and Factor Theorems
- Representation Of Complex Numbers
- Representation theory
- Rewriting Formulas and Equations
- Riemann integral for step function
- Riemann surfaces
- Riemannian geometry
- Ring theory
- Roots Of Unity
- Roots of Complex Numbers
- Roots of Polynomials
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Products
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Fundamental Theorem
- Second Order Recurrence Relation
- Second-order Differential Equations
- Sector of a Circle
- Segment of a Circle
- Sequence and series of real valued functions
- Sequence of Real Numbers
- Sequences
- Sequences and Series
- Series Maths
- Series of non negative terms
- Series of real numbers
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Similarity and diagonalisation
- Simple Interest
- Simple algebras
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Spanning Set
- Special Products
- Special Sequences
- Standard Form
- Standard Integrals
- Standard Unit
- Stone Weierstrass theorem
- Straight Line Graphs
- Subgroup
- Subsequence
- Subspace
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Summation by Parts
- Supremum and Infimum
- Surds
- Surjective functions
- Surjective linear transformation
- System of Linear Equations
- Tables and Graphs
- Tangent of a Circle
- Taylor theorem
- The Quadratic Formula and the Discriminant
- Topological groups
- Torsion theories
- Transformations
- Transformations of Graphs
- Transformations of Roots
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Uniform convergence
- Unit Circle
- Units
- Universal algebra
- Upper and Lower Bounds
- Valuation theory
- Variables in Algebra
- Vector Notation
- Vector Space
- Vector spaces
- Vectors
- Verifying Trigonometric Identities
- Volumes of Revolution
- Von Neumann algebras
- Writing Equations
- Writing Linear Equations
- Zariski topology
- Statistics
- Theoretical and Mathematical Physics

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenAnother day in our complex lives. You already know about complex numbers a little, the polar form of it as well. What then is the need to have another form of complex numbers? Well, you will have to go and ask Euler about that (he is probably grinning at us from up there). But for now, another form of Complex Numbers is inevitable, i.e., the **Exponential Form of Complex Numbers.**

A complex number is fundamentally expressed as \(z=a+ib\) where \(a\) and \(b\) are real-valued constants and \(b≠0\). We also know of another form that involves the argument of a complex number as well, i.e., the **Polar**** form of a Complex Number**.

Recall that the Polar form of a complex number whose argument is \(\theta\) is given as follows:

$$z=r(\cos\theta +i\sin\theta)$$

where \(r\) is the modulus of the complex number: \(r=\sqrt{a^{2}+b^{2}}\).

There is a more compact way we can write this; in an exponential form. But where does the exponential form come from? The answer is **Euler's Formula**.

It is to no one's surprise that we encounter Leonhard Euler, here as well, like in almost every other branch of mathematics. There is a very elegant equation, that encapsulates exponential functions, complex numbers and trigonometric functions, all in one formula. It is known as **Euler's Formula **or **Euler's Identity**.

The formula goes as follows:

$$e^{i\theta}=\cos\theta+i\sin\theta$$

The proof of this equation is unfortunately beyond the current scope of this article. The Right-hand Side of the equation is very familiar if you observe it closely. It is nothing but an integral part of the Polar form of a Complex number.

Euler's Formula has a very interesting consequence for itself. If we set \(\theta=\pi\), we get the following form:

$$ \begin{aligned} e^{i \pi} &=\cos \pi+i \sin \pi \\ \Rightarrow \quad & e^{i \pi}=-1+0 \\ \Rightarrow \quad & e^{i \pi}+1=0 \end{aligned} $$

I am pretty sure you've seen it elsewhere. The formula was once voted by mathematicians around the world as the most beautiful formula in all mathematics. The reason is that it contains all the most important constants in mathematics: \(0,1, i, e\) and \(\pi\).

And now we can substitute for Euler's formula in the Polar form to get our Exponential form of a complex number. So substituting \(e^{i\theta}=\cos\theta+i\sin\theta\) in \(z=r(\cos\theta+i\sin\theta)\):

$$z=re^{i\theta}$$

which is what we were after. Now we have a formula that converts a complex number in simple form to an exponential form.

Note that \(\cos\theta+i\sin\theta\) is often abbreviated as \(\rm{cis}\,\theta\) for convenience and to avoid clutter.

This form can also be extended to powers of complex numbers, such as \(z^{3}=r^{3}e^{i3\theta}\), \(z^{4}=r^{4}e^{i4\theta}\) and so on. In general: \(z^{n}=r^{n}e^{in\theta}\).

Every so often, one might desire the rectangular form of a complex number instead of the Exponential form. We can convert one into another by comparing the two forms, as follows:

$$z=a+i b \hspace{5mm} \ \text{and} \ \hspace{5mm} z=r(\cos \theta+i \sin \theta)=r e^{i \theta}$$

Comparing the RHS of both of the above equations,

$$a=r \cos \theta \hspace{5mm} \ \text{and} \ \hspace{5mm} b=r \sin \theta$$

where \(r\) is the magnitude of \(z\) so we have

$$\cos \theta=\frac{a}{\sqrt{a^{2}+b^{2}}} \hspace{5mm} \ \text{and} \ \hspace{5mm} \sin \theta=\frac{b}{\sqrt{a^{2}+b^{2}}}$$

Substituting for \(\sin \theta\) and \(\cos \theta\) in the exponential form:

$$z=r e^{i \theta} \Rightarrow e^{i \theta}=\frac{a}{\sqrt{a^{2}+b^{2}}}+\frac{i b}{\sqrt{a^{2}+b^{2}}}$$

Hence, one can convert a given complex number in exponential form to rectangular form using the above formula.

To give a view of how the exponential form of a complex number is represented on a complex plane, we need to plot a graph. For a complex number \(z=re^{i\theta}\), the complex number will originate from the origin and incline at an angle \(\theta\) with the positive \(x-\)axis.

The exponential form is a very concise way of writing complex numbers, and it is also very useful since it displays the **argument** and **magnitude** of the complex number.

One important thing to note about the complex numbers in this form is that a complex number of the form \(z=a+ib\) can be written in not one, but **several **exponential forms. This is because the argument \(\theta\) belongs to the interval \((0,2\pi]\) and the function can attain the same value for numerous arguments. For instance, \(\tan \frac{\pi}{4}=\tan \frac{5\pi}{4}\), which also implies that \(re^{\frac{\pi i}{4}}=re^{\frac{5\pi i}{4}}\).

For rectangular coordinates, there is only one form it can take at a time. That is why, for exponential forms, to avoid confusion, we only take into account the **Principal argument **of a complex number.

Follow the steps below to convert a complex number into an **Exponential form**:

From the given \(z=a+ib\), find the magnitude of \(z\): \(r=\sqrt{a^2+b^2}\)

Now calculate the principal argument of the complex number: \(\tan\theta=\frac{b}{a}\)

Thus, we now have the exponential form as \(z=re^{i\theta}\)

Convert the complex number \(z=1+i\) into the exponential form.

**Solution:**

Firstly, we need to find the magnitude of this complex number:

$$\begin{aligned} r&=\sqrt{a^2+b^2} \\ &=\sqrt{1^2+1^2} \\ \therefore r&=\sqrt{2} \end{aligned}$$

Now, we have to calculate the principal argument of \(z\):

$$\begin{aligned} \tan \theta &=\frac{b}{a} \\ \tan \theta &=\frac{1}{1} \\ \therefore \theta &=\frac{\pi}{4}\end{aligned}$$

Finally, substituting for the magnitude and the principal argument in \(z=re^{i \theta}\):

$$z=\sqrt{2}e^{i\frac{\pi}{4}}$$

Hence, we have found the exponential form of the complex number \(z=1+i\).

Find the complex form of the complex number \(z=5\sqrt{2}-5\sqrt{6}i\).

**Solution:**

Firstly, we need to find the magnitude of this complex number:

$$\begin{aligned} r&=\sqrt{a^2+b^2} \\ &=\sqrt{(5\sqrt{2})^2+(-5\sqrt{6})^2} \\ \therefore r&=10\sqrt{2} \end{aligned}$$

Now, we have to calculate the principal argument of \(z\):

$$\begin{aligned} \tan \theta &=\frac{b}{a} \\ \tan \theta &=\frac{-5\sqrt{6}}{5\sqrt{2}} \\ \tan \theta &=-\sqrt{3} \\ \therefore \theta &=\frac{5\pi}{3}\end{aligned}$$

Finally, substituting for the magnitude and the principal argument in \(z=re^{i \theta}\):

$$z=10\sqrt{2}e^{\frac{5\pi i}{3}}$$

Hence, we have found the exponential form of the complex number

Convert the complex number \(z=\frac{5\sqrt{3}}{2}(1+i\sqrt{3})\) into its exponential form.

**Solution:**

Firstly, we need to find the magnitude of this complex number:

$$\begin{aligned} r&=\sqrt{a^2+b^2} \\ &=\left( \frac{5\sqrt{3}}{2} \right) \sqrt{(1)^2+(\sqrt{3})^2} \\ \therefore r&=5\sqrt{3} \end{aligned}$$

Now, we have to calculate the principal argument of \(z\):

$$\begin{aligned} \tan \theta &=\frac{b}{a} \\ \tan \theta &=\frac{\sqrt{3}}{1} \\ \tan \theta &=\sqrt{3} \\ \therefore \theta &=\frac{\pi}{3}\end{aligned}$$

Notice that we did not take into account \(\frac{5\sqrt{3}}{2}\) since it would cancel out eventually.

Finally, substituting for the magnitude and the principal argument in \(z=re^{i \theta}\):

$$z=5\sqrt{3} e^{\frac{\pi i}{3}}$$

Hence, we have found the exponential form of the complex number.

- A complex number can always be expressed in a corresponding form known as the
**Exponential form.** - For a complex number \(z=a+ib\), the exponential form is given by \(z=re^{i \theta}\), where \(r\) and \(\theta\) are the magnitude and the principal argument of the complex number, respectively.
- The
**exponential form**is an alternate to the polar form given by \(z=r(\cos\theta +i\sin\theta)\). - The
**exponential form**is derived from the**Euler's identity**\(e^{i\theta}=\cos\theta+i\sin\theta\).

We can write the complex number z = r(cos(θ) + i sin(θ)) in the exponential form as z = re^{iθ}.

We can use the below formula to convert exponential numbers to complex numbers.

re^{iθ}=** **r(cos(θ) + i sin(θ))

Why is there a need for **Exponential form **of a complex number?

**Exponential form **is much needed when we have the magnitude and principal argument of a complex number in direct view.

Why do we we take in account the principal argument of a complex number instead of all the other arguments?

The reason is to have a unique argument, having many arguments will lead to ambiguity, and to avoid that, we only consider the principal argument of a complex number.

From which form of a complex number, is the exponential form derived from?

The exponential form is derived from the **polar **form.

What is the principal argument of \(z=1+i\sqrt{3}\)?

$$\frac{\pi}{3}$$

What is the **Modulus of a complex number**?

The distance of a complex point from the origin on a complex plane is called the **modulus of a complex number.**

For a complex number \(z=a+ib\), how do you find its principal argument?

Let \(\theta\) being the principal argument, it is given by:

$$\tan \theta=\frac{b}{a}$$

Already have an account? Log in

Open in App
More about Exponential Form of Complex Numbers

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Mock-Exams
- Smart Note-Taking

Sign up to highlight and take notes. It’s 100% free.

Save explanations to your personalised space and access them anytime, anywhere!

Sign up with Email Sign up with AppleBy signing up, you agree to the Terms and Conditions and the Privacy Policy of StudySmarter.

Already have an account? Log in

Already have an account? Log in

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Mock-Exams
- Smart Note-Taking

Sign up with Email

Already have an account? Log in