Proof by Induction

If a domino falls in a chain, the next domino will surely fall too. Since this second domino is falling, the next one in the chain will certainly fall as well. Since this third domino is falling, the fourth will fall too, and then the fifth, and then the sixth, and so on. Therefore, if it is known that a domino falling will knock over the next domino in the chain, you can say for a fact that knocking over the first domino in the chain will cause all the dominoes to fall. This resembles a type of mathematical proof called **proof by induction**.

Explore our app and discover over 50 million learning materials for free.

- Applied Mathematics
- Calculus
- Decision Maths
- Discrete Mathematics
- Geometry
- Logic and Functions
- Mechanics Maths
- Probability and Statistics
- Pure Maths
- ASA Theorem
- Absolute Convergence
- Absolute Value Equations and Inequalities
- Abstract algebra
- Addition and Multiplication of series
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebra of limits
- Algebra over a field
- Algebraic Fractions
- Algebraic K-theory
- Algebraic Notation
- Algebraic Representation
- Algebraic curves
- Algebraic geometry
- Algebraic number theory
- Algebraic topology
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Argand Diagram
- Arithmetic Sequences
- Associative algebra
- Average Rate of Change
- Banach algebras
- Basis
- Bijective Functions
- Bilinear forms
- Binomial Expansion
- Binomial Theorem
- Bounded Sequence
- C*-algebras
- Category theory
- Cauchy Sequence
- Cayley Hamilton Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Clifford algebras
- Cohomology theory
- Combinatorics
- Common Factors
- Common Multiples
- Commutative algebra
- Compact Set
- Completing the Square
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Congruence Equations
- Conic Sections
- Connected Set
- Construction and Loci
- Continuity and Uniform convergence
- Continuity of derivative
- Continuity of real valued functions
- Continuous Function
- Convergent Sequence
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Coupled First-order Differential Equations
- Cubic Function Graph
- Data Transformations
- De Moivre's Theorem
- Deductive Reasoning
- Definite Integrals
- Derivative of a real function
- Deriving Equations
- Determinant Of Inverse Matrix
- Determinant of Matrix
- Determinants
- Diagonalising Matrix
- Differentiability of real valued functions
- Differential Equations
- Differential algebra
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Dimension
- Direct and Inverse proportions
- Discontinuity
- Disjoint and Overlapping Events
- Disproof By Counterexample
- Distance from a Point to a Line
- Divergent Sequence
- Divisibility Tests
- Division algebras
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Eigenvalues and Eigenvectors
- Ellipse
- Elliptic curves
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Equicontinuous families of functions
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Fermat's Little Theorem
- Field theory
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding The Area
- First Fundamental Theorem
- First-order Differential Equations
- Forms of Quadratic Functions
- Fourier analysis
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Gram-Schmidt Process
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs And Differentiation
- Graphs Of Exponents And Logarithms
- Graphs of Common Functions
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Grothendieck topologies
- Group Mathematics
- Group representations
- Growth and Decay
- Growth of Functions
- Gröbner bases
- Harmonic Motion
- Hermitian algebra
- Higher Derivatives
- Highest Common Factor
- Homogeneous System of Equations
- Homological algebra
- Homotopy theory
- Hopf algebras
- Hyperbolas
- Ideal theory
- Imaginary Unit And Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Injective linear transformation
- Instantaneous Rate of Change
- Integers
- Integrating Ex And 1x
- Integrating Polynomials
- Integrating Trigonometric Functions
- Integration
- Integration By Parts
- Integration By Substitution
- Integration Using Partial Fractions
- Integration of Hyperbolic Functions
- Interest
- Invariant Points
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Inverse of a Matrix and System of Linear equation
- Invertible linear transformation
- Iterative Methods
- Jordan algebras
- Knot theory
- L'hopitals Rule
- Lattice theory
- Law Of Cosines In Algebra
- Law Of Sines In Algebra
- Laws of Logs
- Leibnitz's Theorem
- Lie algebras
- Lie groups
- Limits of Accuracy
- Linear Algebra
- Linear Combination
- Linear Expressions
- Linear Independence
- Linear Systems
- Linear Transformation
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition And Subtraction
- Matrix Calculations
- Matrix Determinant
- Matrix Multiplication
- Matrix operations
- Mean value theorem
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modelling with First-order Differential Equations
- Modular Arithmetic
- Module theory
- Modulus Functions
- Modulus and Phase
- Monoidal categories
- Monotonic Function
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplicative ideal theory
- Multiplying And Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Non-associative algebra
- Normed spaces
- Notation
- Number
- Number Line
- Number Systems
- Number Theory
- Number e
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations With Matrices
- Operations with Decimals
- Operations with Polynomials
- Operator algebras
- Order of Operations
- Orthogonal groups
- Orthogonality
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Hyperbolas
- Parametric Integration
- Parametric Parabolas
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Pointwise convergence
- Poisson algebras
- Polynomial Graphs
- Polynomial rings
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Determinants
- Properties of Exponents
- Properties of Riemann Integral
- Properties of dimension
- Properties of eigenvalues and eigenvectors
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic forms
- Quadratic functions
- Quadrilaterals
- Quantum groups
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Ratio and Root test
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Rearrangement
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Reduced Row Echelon Form
- Reducible Differential Equations
- Remainder and Factor Theorems
- Representation Of Complex Numbers
- Representation theory
- Rewriting Formulas and Equations
- Riemann integral for step function
- Riemann surfaces
- Riemannian geometry
- Ring theory
- Roots Of Unity
- Roots of Complex Numbers
- Roots of Polynomials
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Products
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Fundamental Theorem
- Second Order Recurrence Relation
- Second-order Differential Equations
- Sector of a Circle
- Segment of a Circle
- Sequence and series of real valued functions
- Sequence of Real Numbers
- Sequences
- Sequences and Series
- Series Maths
- Series of non negative terms
- Series of real numbers
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Similarity and diagonalisation
- Simple Interest
- Simple algebras
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Spanning Set
- Special Products
- Special Sequences
- Standard Form
- Standard Integrals
- Standard Unit
- Stone Weierstrass theorem
- Straight Line Graphs
- Subgroup
- Subsequence
- Subspace
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Summation by Parts
- Supremum and Infimum
- Surds
- Surjective functions
- Surjective linear transformation
- System of Linear Equations
- Tables and Graphs
- Tangent of a Circle
- Taylor theorem
- The Quadratic Formula and the Discriminant
- Topological groups
- Torsion theories
- Transformations
- Transformations of Graphs
- Transformations of Roots
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Uniform convergence
- Unit Circle
- Units
- Universal algebra
- Upper and Lower Bounds
- Valuation theory
- Variables in Algebra
- Vector Notation
- Vector Space
- Vector spaces
- Vectors
- Verifying Trigonometric Identities
- Volumes of Revolution
- Von Neumann algebras
- Writing Equations
- Writing Linear Equations
- Zariski topology
- Statistics
- Theoretical and Mathematical Physics

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenIf a domino falls in a chain, the next domino will surely fall too. Since this second domino is falling, the next one in the chain will certainly fall as well. Since this third domino is falling, the fourth will fall too, and then the fifth, and then the sixth, and so on. Therefore, if it is known that a domino falling will knock over the next domino in the chain, you can say for a fact that knocking over the first domino in the chain will cause all the dominoes to fall. This resembles a type of mathematical proof called **proof by induction**.

Proof by induction is a way of proving that something is true for every positive integer.

**Proof by induction** is a way of proving that a certain statement is true for every positive integer \(n\). Proof by induction has four steps:

- Prove the
**base case**: this means proving that the statement is true for the**initial value**, normally \(n = 1\) or \(n=0.\) - Assume that the statement is true for the value \( n = k.\) This is called the
**inductive hypothesis.** - Prove the
**inductive step**: prove that if the assumption that the statement is true for \(n=k\), it will also be true for \(n=k+1\). - Write a
**conclusion**to explain the proof, saying: "If the statement is true for \(n=k\), the statement is also true for \(n=k+1\). Since the statement is true for \(n=1\), it must also be true for \(n=2\), \(n=3\), and for any other positive integer."

Proof by induction is an incredibly useful tool to prove a wide variety of things, including problems about divisibility, matrices and series.

First, let's look at an example of a divisibility proof using induction.

Prove that for all positive integers \(n\), \(3^{2n+2} + 8n -9 \) is divisible by 8.

**Solution**

First define \(f(n) = 3^{2n+2} + 8n -9 \).

Step 1: Now consider the base case. Since the question says for all positive integers, the base case must be \(f(1)\). You can substitute \(n=1\) into the formula to get

\[ \begin{align} f(1) = 3^{2+2} + 8 - 9 & = 3^4 - 1 \\ & = 81 - 1 \\ & = 80. \end{align} \]

80 is clearly divisible by 10, hence the condition is true for the base case.

Step 2: Next, state the inductive hypothesis. This assumption is that \(f(k) = 3^{2k + 2} + 8k - 9 \) is divisible by 8.

Step 3: Now, consider \(f(k+1)\). The formula will be:

\[ \begin{align} f(k+1) & = 3^{2(k+1)+2} + 8(k + 1) - 9 \\ & = 3^{2k + 4} + 8k + 8 -9 \\ & = 3^{2k+4} + 8k -9 + 8. \end{align} \]

It may seem weird to write it like this, without simplifying the \(8-9\) to become \(-1\). There is a good reason to do this: you want to keep the formula as similar to the formula of \(f(k)\) as you can since you need to transform it into this somehow.

To do this transformation, notice that the first term in \(f(k+1) \) is the same as the first term in \(f(k)\) but multiplied by \(3^2 = 9\). Hence, you can split this up into two separate parts.

\[ \begin{align} f(k+1) & = 9 \cdot 3^{2k+2} + 8k -9 + 8 \\ & = 3^{2k+2} + 8 \cdot 3^{2k+2} + 8k -9 + 8 \\ & = (3^{2k+2} + 8k -9) + 8 \cdot 3^{2k+2} + 8 \\ & = f(k) + 8 \cdot 3^{2k+2} + 8. \end{align} \]

The first term in this is divisible by 8 because of the assumption, and the second and third terms are multiples of 8, thus they are divisible by 8 too. Since this is the sum of different terms that are all divisible by 8, \(f(k+1)\) must also be divisible by 8 too, assuming the inductive hypothesis is true. Hence, you have proven the inductive step.

Step 4: Finally, remember to write the conclusion. This should sound something like:

If it is true that \( f(k) \) is divisible by 8, then it will also be true that \(f(k+1) \) is divisible by 8. Since it is true that \(f(1)\) is divisible by 8, it is true that \(f(n)\) is divisible by 8 for all positive integers \(n\).

In the next sections, you will look at using proof by induction to prove some key results in Mathematics.

Here is a proof by induction where you must use trigonometric identities to prove an inequality.

Prove that for any non-negative integer \(n\),

\[ |\sin{(nx)}| \leq n \sin{x}, \]

for \( x \in (0, \pi) \).

**Solution**

**Step 1:** The base case is clear, since substituting in \(n=1\) makes the inequality \( |\sin{x}| \leq{\sin{x}}\), which is true for \( x \in (0, \pi) \).

**Step 2:** For the induction hypothesis, assume that

\[ | \sin{(mx)} | \leq m \sin{x}. \]

**Step 3:** You must now prove that \( |\sin{((m+1)x)}| \leq (m+1) \sin{x}. \) First, you can expand the bracket of the left hand side:

\[ |\sin{((m+1)x)}| = |\sin{(mx + x)}| \]

Now, you can use the trigonometric sum of angles formula for the sine function.

\[ |\sin{((m+1)x)}| = |\sin{(mx)} \cos{(m)} + \cos{(mx)} \sin{(m)}|. \]

From here, you can use the **triangle inequality for absolute values:** \( | a + b| \leq |a| + |b| \).

\[ |\sin{((m+1)x)}| \leq |\sin{(mx)} \cos{(x)}| + |\cos{(mx)} \sin{(x)}|. \]

Remember that \( \cos{(mx)} \) and \( \cos{(x)} \) are less than one. Hence, you can create a new upper bound by estimating the cosine functions as 1:

\[ \begin{align} |\sin{((m+1)x)}| &\leq |\sin{(mx)} \cos{(x)}| + |\cos{(mx)} \sin{(x)}| \\ &\leq |\sin{(mx)}| + |\sin{(x)}|. \end{align} \]

From here, notice that there is \( |\sin{(mx)}| \) on the left-hand side. This is where you can use the inductive hypothesis. You know \( |\sin{(mx)}| \leq m \sin{x}\), so you can create another upper bound:

\[ \begin{align} |\sin{((m+1)x)}| &\leq |\sin{(mx)}| + |\sin{(x)}| \\ &\leq m \sin{(x)} + |\sin{(x)}|. \end{align} \]

Finally, as was stated in the base case, \( |\sin{(x)}| \leq \sin{(x)} \). S,

\[ |\sin{((m+1)x)}| \leq m \sin{(x)} + \sin{(x)} = (m+1)\sin{(x)}, \]

as required.

Step 4: Finally, state the conclusion. We have proved that the inequality holds for \( n = m+1 \) if it holds for \( n = m.\) Since it holds for \(n=1\), by induction it will hold for all positive integers.

The Fundamental Theorem of Arithmetic states that every integer \(n \geq 2\) can be written uniquely as a product of primes. This proof splits into two parts:

Proof that any integer \(n \geq 2\) can be written as a product of primes, and

Proof that this product of primes is unique (up to the order in which the primes are written).

The first part can be proved using a specific type of induction called **strong induction.**

**Strong Induction**** **is the same as regular induction, but rather than assuming that the statement is true for \(n=k\), you assume that the statement is true for any \(n \leq k\). The steps for strong induction are:

- The
**base case**: prove that the statement is true for the initial value, normally \(n = 1\) or \(n=0.\) - The
**inductive hypothesis:**assume that the statement is true for all \( n \le k.\) - The
**inductive step**: prove that if the assumption that the statement is true for \(n \le k\), it will also be true for \(n=k+1\). - The
**conclusion:**write: "If the statement is true for all \(n \le k\), the statement is also true for \(n=k+1\). Since the statement is true for \(n=1\), it must also be true for \(n=2\), \(n=3\), and for any other positive integer."

Let's use strong induction to prove the first part of the Fundamental Theorem of Arithmetic.

Prove that any integer \(n \geq 2\) can be written as a product of primes.

**Solution**

**Step 1:** First, prove the base case, which in this case requires \(n=2\). Since \(2 \) is already a prime number, it is already written as a product of primes, and hence the base case it true.

**Step 2:** Next, state the inductive hypothesis. You will assume that for any \( 2 \leq n \leq k\), \(n\) can be written as a product of primes.

**Step 3:** Finally, you must use the assumption to prove that \(n=k+1 \) can be written as a product of primes. There are two cases:

- \(k+1\) is a prime number, in which case it is clearly already written as the product of primes.
- \(k+1\) is not a prime number and there must be a composite number.

If \(k+1\) is not a prime number, this means it must be divisible by a number other than itself or 1. This means there exists \(a_1\) and \(a_2\), with \(2 \le a_1\) and \(a_2 \le k\), such that \(k+1 = a_1 a_2. \) By the inductive hypothesis, \(a_1\) and \(a_2\) must have a prime decomposition, since \(2 \le a_1\) and \(a_2 \le k\). This means there exist prime numbers \( p_1,\dots ,p_i\) and \(q_1,\dots ,q_j\) such that

\[ \begin{align} a_1 & = p_1\dots p_i \\ a_2 & = q_1 \dots q_j. \end{align} \]

Finally, since \(k+1 = a_1 a_2, \) you have:

\[ k+1 = p_1\dots p_i q_1\dots q_j \]

which is a product of primes. Hence, this is a prime decomposition for \(k+1\).

Step 4: \(k+1\) will have a prime decomposition if all numbers \(n\), \(2 \leq n \leq k \) also have a prime decomposition. Since 2 has a prime decomposition, therefore by induction every positive integer greater than or equal to 2 must have a prime decomposition.

The proof that this product of primes is unique is a bit different, but nothing too complex. It uses **proof by contradiction**.

Prove that the prime factorisation for any number \(n \geq 2\) is unique.

**Solution**

Suppose you have two different prime factorisations for \(n\). These will be

\[ \begin{align} n & = p_1\dots p_i \mbox{ and }\\ n & = q_1\dots q_j. \end{align} \]

You can set these as equal since they both equal \(n\):

\[ p_1\dots p_i = q_1\dots q_j \]

Since the left-hand side has the factor \( p_1 \) in it, both sides must be divisible by \(p_1\). Since \(p_1\) is prime and all the \(q\)'s are also prime, it must be that one of the \(q\)'s is equal to \(p_1\). Call this \(q_k\). Now, you can cancel out \(p_1\) and \(q_k\) to get:

\[ p_2\dots p_i = q_1\dots q_{k-1} q_{k+1}\dots q_j. \]

You can do this same process with the \(p_2\), and then the \(p_3\), until you run out of either \(p\)'s or \(q\)'s. If you run out of \(p\)'s first, the left-hand side will now be 1. This means the right-hand side must be equal to 1 as well, but since it is made only of primes, it must mean that all of the primes have been cancelled out. Thus, for every \(p\) in the list, there must be a \(q\) that it is equal to. Hence, the two factorisations were in fact the same.

The process is the same if you assume that you run out of \(q\)'s first.

The sum of the squares of the first \(n\) numbers is given by the formula:

\[ 1^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}. \]

Let's prove this by induction.

Prove that for any positive integer \(n\),

\[ 1^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}. \]

**Solution**

Step 1: First, consider the base case, when \(n=1\). The left-hand side is clearly just 1, while the right-hand side becomes

\[ \frac{1 \cdot 2 \cdot 3}{6} = \frac{6}{6} = 1. \]

Hence, the base case is correct.

Step 2: Next, write the induction hypothesis. This is that

\[ 1^2 + \dots + m^2 = \frac{m(m+1)(2m+1)}{6}. \]

Step 3: Finally, prove the inductive step. The left-hand side, for \(n=m+1\), will be:

\[ 1^2 +\dots + m^2 + (m+1)^2 = (1^2 +\dots + m^2) + (m+1)^2. \]

The first \(n\) terms in this are in the inductive hypothesis. Thus, you can replace these with the right-hand side from the inductive hypothesis:

\[ \begin{align} 1^2 +\dots + m^2 + (m+1)^2 & = \frac{m(m+1)(2m+1)}{6} + (m+1)^2 \\ & = \frac{m(m+1)(2m+1) + 6(m+1)^2}{6} \\ & = \frac{(m+1)\left[m(2m+1) + 6(m+1)\right]}{6}. \end{align}\]

Next, expand the bit inside of the square brackets, so you will have a quadratic. Then you can solve the quadratic normally:

\[ \begin{align} 1^2 +\dots + m^2 + (m+1)^2 & = \frac{(m+1)\left[2m^2+1m + 6m+6\right]}{6} \\ & = \frac{(m+1)[2m^2 + 7m + 6}{6} \\ & = \frac{(m+1)(m+2)(2m+3)}{6} \\ & = \frac{(m+1)((m+1)+1)(2(m+1)+1)}{6}, \end{align}\]

as required. Thus, you have proven the inductive step.

Step 4: Finally, write the conclusion. If the sum of squares formula is true for any positive integer \(m\), then it will be true for \(m+1\). Since it is true for \(n=1\), it is true for all positive integers.

**Binet's Formula **is a way of writing the Fibonacci numbers in a closed form expression.

**Binet's Formula:**

\[F_n = \frac{\phi^n - \hat{\phi}^n}{\sqrt{5}}, \]

where \(F_n\) is the \(n\)th Fibonacci number, meaning \(F_n\) satisfies the recurrence initial value problem:

\[ \begin{align} &F_n = F_{n-1} + F_{n-2}, \\ &F(0) =0, \\ &F(1)=1. \end{align} \]

The number \(\phi\) is known as the **golden mean**, and is the value:

\[\phi = \frac{1+\sqrt{5}}{2}\]

and \(\hat{\phi} = 1 - \phi.\)

Notice that \( \phi\) and \( \hat{\phi} \) are the solutions to the quadratic equation \( x^2 = 1 + x.\) This result is very important the the proof below.

Prove Binet's Formula using induction.

**Solution**

Step 1: First, prove the induction base. This will be for \(F_0\) and \(F_1\). For \(F_0\):

\[\frac{\phi^0 - \hat{\phi}^0}{\sqrt{5}} = \frac{1-1}{5} = 0, \]

which is the value of \( F_0\) as expected.

For \(F_1\):

\[ \begin{align} \frac{\phi - \hat{\phi}}{\sqrt{5}} & = \frac{\frac{1+\sqrt{5}}{2} \frac{1-\sqrt{5}}{2}}{\sqrt{5}} \\ & = \frac{1}{\sqrt{5}}\cdot \frac{1-1 +\sqrt{5} + \sqrt{5}}{2} \\ & = 1, \end{align} \]

which is the expected answer. Thus, the induction base is proven.

Step 2: Next, state the induction hypothesis. In this case, strong induction must be used. The hypothesis is that for any \( 0 \leq i \leq k+1, \)

\[ F_i = \frac{\phi^i + \hat{\phi}^i}{\sqrt{5}}. \]

Step 3: Now you must prove the induction step, which is that

\[F_{k+2} = \frac{\phi^{k+2} + \hat{\phi}^{k+2}}{\sqrt{5}}.\]

Start with the right-hand side and try and simplify it until you reach the left-hand side. First, start by splitting the power of \(k+2\) into 2 separate terms, one with the power of \(k\) and the other with the power of \(2\).

\[ \frac{\phi^{k+2} + \hat{\phi}^{k+2}}{\sqrt{5}} = \frac{\phi^2 \phi^k + \hat{\phi}^2 \hat{\phi}^k}{\sqrt{5}} \]

Now, you can use the result that \( \phi^2 = 1 + \phi\) and \( \hat{\phi}^2 = 1 + \hat{\phi} \).

\[ \begin{align} \frac{\phi^{k+2} + \hat{\phi}^{k+2}}{\sqrt{5}} & = \frac{(1+\phi) \phi^{k} + (1+\hat{\phi}) \hat{\phi}^{k}}{\sqrt{5}} \\ & = \frac{\phi^{k} + \hat{\phi}^{k} + \phi^{k+1} + \hat{\phi}^{k+1}}{\sqrt{5}} \\ & = \frac{\phi^{k} + \hat{\phi}^{k}}{\sqrt{5}} + \frac{\phi^{k+1} + \hat{\phi}^{k+1}}{\sqrt{5}} \\ & = F_k + F_{k+1} \\ & = F_{k+2}. \end{align} \]

And thus, the induction step has been proved. The step that gets the answer to \( F_k + F_{k+1} \) requires the use of the induction hypothesis to get there.

Step 4: Finally, the conclusion: If Binet's Formula holds for all non-negative integers up to \(k+1\), then the formula will hold for \(k+2\). Since the formula holds for \(F_0\) and \(F_1\), the formula will hold for all non-negative integers.

- Proof by induction is a way of proving that something is true for every positive integer. It works by showing that if the result holds for \(n=k\), the result must also hold for \(n=k+1\).
- Proof by induction starts with a
**base case,**where you must show that the result is true for it's initial value. This is normally \( n = 0\) or \( n = 1\). - You must next make an
**inductive hypothesis,**which is assuming that the result holds for \(n=k\). In**strong induction**, the inductive hypothesis is that the result holds for all \( n \leq k.\) - You must next prove the
**inductive step**, showing that if the inductive hypothesis holds, the result will also hold for \( n = k+1\). - Finally, you must write a
**conclusion**, explaining why the proof works.

- Fig 1: Fibonacci Spiral over tiled squares (https://commons.wikimedia.org/wiki/File:Fibonacci_Spiral.svg) by Romain, licensed by CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/?ref=openverse#).

Proof by induction works because you are proving that if the result holds for n=k, it must also hold for n=k+1. Hence, if you show it is true for n=1, it must be true for:

- 1+1 = 2,
- 2+1 = 3,
- 3+1 = 4 etc.

What is the first step of proof by induction?

Proving the base case.

What is the second step of proof by induction?

Forming the induction hypothesis.

What is the third step of proof by induction?

Proving the induction step.

What is the fourth step of proof by induction?

Writing the conclusion.

What is strong induction?

A type of mathematical induction where the induction hypothesis is:

"Assume true for all \(n \leq m\)"

instead of

"Assume true for \(n = m\)".

Can the following formula be proved by induction?

L'Hopital's Rule:

if \( \lim\limits_{x \rightarrow c} f(x)\) and \( \lim\limits_{x \rightarrow c} g(x) \) are both equal to 0 or \(\infty,\) then

\[ \lim\limits_{x \rightarrow c} \frac{f(x)}{g(x)} = \lim\limits_{x \rightarrow c} \frac{f'(x)}{g'(x)}. \]

No.

Already have an account? Log in

Open in App
More about Proof by Induction

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Mock-Exams
- Smart Note-Taking

Sign up to highlight and take notes. It’s 100% free.

Save explanations to your personalised space and access them anytime, anywhere!

Sign up with Email Sign up with AppleBy signing up, you agree to the Terms and Conditions and the Privacy Policy of StudySmarter.

Already have an account? Log in

Already have an account? Log in

The first learning app that truly has everything you need to ace your exams in one place

- Flashcards & Quizzes
- AI Study Assistant
- Study Planner
- Mock-Exams
- Smart Note-Taking

Sign up with Email

Already have an account? Log in