What is the formula for calculating the slope of a line?
The formula for calculating the slope of a line is \\((y_2 - y_1) / (x_2 - x_1)\\), where \\((x_1, y_1)\\) and \\((x_2, y_2)\\) are two distinct points on the line.
What do the variables in the slope formula represent?
In the slope formula, \\( m = \\frac{y_2 - y_1}{x_2 - x_1} \\), \\( m \\) represents the slope, \\( y_1 \\) and \\( y_2 \\) are the y-coordinates of two different points, and \\( x_1 \\) and \\( x_2 \\) are the x-coordinates of those points.
How do you find the slope between two points?
To find the slope between two points, \\( (x_1, y_1) \\) and \\( (x_2, y_2) \\), use the formula \\( m = \\frac{y_2 - y_1}{x_2 - x_1} \\). The slope \\( m \\) represents the rate of change or gradient between the points.
What are the different types of slope?
The different types of slope are positive slope, negative slope, zero slope, and undefined slope. Positive slopes rise from left to right, negative slopes fall from left to right, zero slopes are horizontal, and undefined slopes are vertical.
How is the slope formula used in real-life applications?
The slope formula is used in real-life applications to analyse and predict trends, compute gradients in engineering and construction, optimise routes in navigation, and assess economic data. It helps in determining the rate of change and is fundamental in fields like physics, finance, and geography.